第三讲 导数的四则运算
第三讲 导数的四则运算
导数与微分 1.求导数的四则运算法则-加减法 设函数u(x),v(x)在x处可导,则: [u(x)+v(x)]'=u'(x)+v'(x) [u(x)-v(x)]'=u'(x)-v'(x) 例1:求下列函数的导数: (1)y=2x+x9 (2)y logz*+sinx (3)y=cosx+vx (4)y=Inx+3x
1.求导数的四则运算法则-加减法 设函数𝒖(𝒙), 𝒗(𝒙)在𝒙处可导,则: [𝒖 𝒙 + 𝒗 𝒙 ]′ =𝒖′ 𝒙 + 𝒗 ′ 𝒙 𝒖 𝒙 − 𝒗 𝒙 ′ = 𝒖 ′ 𝒙 − 𝒗 ′ 𝒙 例1:求下列函数的导数: (1)𝒚 = 𝟐 𝒙+𝒙 𝟗 (2)𝒚 = 𝒍𝒐𝒈𝟐 𝒙+𝒔𝒊𝒏𝒙 (3)𝒚 = 𝒄𝒐𝒔𝒙+ 𝒙 (4)𝒚 = 𝒍𝒏𝒙+𝟑 𝒙
导数与微分 解: (1)y=(2+x9)'=(2x)'+(x9) =2xLn2+9x9-1=2xLn2+9x8 2)y=(log:+sinx)= +cosx Vx=x2 1 (3)y'=(cosx+x)'=sinx+ 2v元 ④y=x+3y-+303
解: (1)𝒚′ = (𝟐 𝒙+𝒙 𝟗)′ = 𝟐 𝒙 ′ + 𝒙 𝟗 ′ (2)𝒚′ = (𝒍𝒐𝒈𝟐 𝒙+𝒔𝒊𝒏𝒙)′ (3)y ′ = (𝒄𝒐𝒔𝒙 + 𝒙)′ (4)𝒚′=(𝒍𝒏𝒙 + 𝟑 𝒙 )′ = 𝟐 𝒙 𝒍𝒏𝟐 + 𝟗𝒙 𝟗−𝟏 = 𝟐 𝒙 𝒍𝒏𝟐 + 𝟗𝒙 𝟖 = 𝟏 𝒙 𝒍𝒏𝟐 + 𝒄𝒐𝒔𝒙 = 𝟏 𝒙 + 𝟑 𝒙 𝒍𝒏𝟑 = −𝒔𝒊𝒏𝒙 + 𝟏 𝟐 𝒙 𝑥=𝑥 1 2
导数与微分 练习(1)y=5x+x13 (2)y=log4x-sinx (3)y=cosx+3元 (4)y=lnx+4
练习(1)𝒚=𝟓 𝒙+𝒙 𝟏𝟑 (2)𝒚=𝒍𝒐𝒈𝟒 𝒙 − 𝒔𝒊𝒏𝒙 (3)𝒚 = 𝒄𝒐𝒔𝒙+ 𝟑 𝒙 (4)𝒚 = 𝒍𝒏𝒙+𝟒 𝒙
导数与微分 2.求导数的四则运算法则-一乘法 [u(x)·v(x)]'=u'(x)v(x)+v'(x)u(x) [Cu(x)]'=Cu'(x) 证明:[C·u(x)]'=(C)'u(x)+u'(x)C =0×u(x)+u'(x)C =c u'(x)
𝒖 𝒙 ∙ 𝒗 𝒙 ′ = 𝒖 ′ 𝒙 𝒗 𝒙 + 𝒗 ′ 𝒙 𝒖(𝒙) [C 𝒖(𝒙)] ′ = 𝑪 𝒖 ′ 𝒙 2. 求导数的四则运算法则-乘法 证明: 𝐂 ∙ 𝒖 𝒙 ′ = (𝑪) ′𝒖 𝒙 + 𝒖 ′ 𝒙 𝑪 = 𝑪 𝒖 ′ 𝒙 = 𝟎 × 𝒖 𝒙 + 𝒖 ′ 𝒙 𝑪