分类属性数据聚类算法HABOS

CABOSFV_C是一种针对分类属性高维数据的高效聚类算法,该算法采用集合稀疏差异度进行距离计算,并采用稀疏特征向量实现数据压缩.该算法的聚类效果受集合稀疏差异度上限参数的影响,而该参数的选取没有明确的指导.针对该问题提出基于集合稀疏差异度的启发式分类属性数据层次聚类算法(heuristic hierarchical clustering algorithm of categorical data based on sparse feature dissimilarity,HABOS),该方法从聚结型层次聚类思想的角度出发,在聚类数上限参数的约束下,应用新的内部聚类有效性评价指标(clustering validation index based on sparse feature dissimilarity,CVISFD)进行启发式度量,从而实现对聚类层次的自动选取.UCI基准数据集的实验结果表明,HABOS有效地提高了聚类准确性和稳定性.
文件格式:PDF,文件大小:358.08KB,售价:2.88元
文档详细内容(约8页)
点击进入文档下载页(PDF格式)
共8页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录