第十一一方
第十一章能量方法 □§11-1变形能的普遍表达式 □§11-2莫尔定理(单位力法 §11-3卡氏定理
第十一章 能量方法 §11–1 变形能的普遍表达式 §11–2 莫尔定理(单位力法) §11–3 卡氏定理
能量方法 §11-1变形能的普遍表达式 能量原理: 弹性体内部所贮存的变形能,在数值上等于外力所作 的功,即 U=wr 利用这种功能关系分析计算可变形固体的位移、变形 和内力的方法称为能量方法 二、杆件变形能的计算: 1.轴向拉压杆的变形能计算: U2/a或U=∑h比能:=2E N2(x) E A
§11–1 变形能的普遍表达式 一、能量原理: 二、杆件变形能的计算: 1.轴向拉压杆的变形能计算: = L x EA N x U d 2 ( ) 2 = = n i i i i i E A N L U 1 2 2 或 2 1 比能: u = 弹性体内部所贮存的变形能,在数值上等于外力所作 的功,即 U=W 利用这种功能关系分析计算可变形固体的位移、变形 和内力的方法称为能量方法
能量方法 2.扭转杆的变形能计算: M(x) UEL 2GI dx或U M 台2Gl Pi 比能:=vy 3.弯曲杆的变形能计算: M2(x) nM U= dx或U=∑ J2EⅠ 台2E1l1 比能:u=oE 2
2.扭转杆的变形能计算: = L P n x GI M x U d 2 ( ) 2 = = n i i Pi ni i G I M L U 1 2 2 或 2 1 比能: u = 3.弯曲杆的变形能计算: = L x EI M x U d 2 ( ) 2 = = n i i i i i E I M L U 1 2 2 或 2 1 比能: u =
能量方法 三、变形能的普遍表达式: 变形能与加载次序无关;相互独立的力(矢)引起的变形能 可以相互叠加。 0= N(x)1 d x t M(x) d x t M2(x) L 2EA L2GlnJ2EⅠ Q2(x) dx L 2E4 s>剪切挠度因子 细长杆,剪力引起的变形能可忽略不计 U= N(x x dx+ ndx t M2(x) L 2EAJL GIJL 2EI
三、变形能的普遍表达式: 变形能与加载次序无关;相互独立的力(矢)引起的变形能 可以相互叠加。 细长杆,剪力引起的变形能可忽略不计。 + L x EA Q x d 2 ( ) 2 S S → 剪切挠度因子x EI M x x GI M x x EA N x U L L P n L d 2 ( ) d 2 ( ) d 2 ( ) 2 2 2 = + + x EI M x x GI M x x EA N x U L L P n L d 2 ( ) d 2 ( ) d 2 ( ) 2 2 2 = + +