1.2.11.2.21.2.31.2.41.2.51.2.61.2.71.2.81.2.91.2.10以及G当 n > N2 时, 有 [bn- bl<2,因此,若取 N = max(Ni,N2),则当 n > N 时,上面两个式子同时成立所以有EEI(an + bn) - (a + b)l ≤ [an - al + [bn - bl < =E+22同样可证明两个数列相减的情况3°首先注意到[anbn -abl≤ lanbn -anbl + lanb-ab= [anllbn - b| + [bllan - al.其次注意到,由于[αn},[bn}是收敛数列,故都是有界的,取一个大的界M,使得[anl, [bnl < M (n ≥1).二返回全屏关闭退出A16/47
1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10 ±9 n > N2 , k |bn − b| < ε 2 , Ïd, e N = max(N1, N2), K n > N , þ¡üªfÓ¤á, ¤±k |(an + bn) − (a + b)| 6 |an − a| + |bn − b| < ε 2 + ε 2 = ε. Óy²üê~¹. 3 ◦ Äk5¿ |anbn − ab| 6 |anbn − anb| + |anb − ab| = |an||bn − b| + |b||an − a|. Ùg5¿, du {an}, {bn} ´Âñê, Ñ´k., . M, ¦ |an|, |bn| < M (n > 1). 16/47 kJ Ik J I £ ¶ '4 òÑ