1.2.51.2.61.2.11.2.21.2.31.2.41.2.71.2.81.2.91.2.10I例1若α>0,则lim=0.nan-a证明分析:希望-0<,即<e即1naE1/anE只要取N=[()/]+1书写:>0,N=[()/] +1,当n>N时,有<NQna-=E1于是lim= 0.nan-→返回全屏关闭退出?6/47
1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10 ~ 1 e α > 0, K lim n→∞ 1 nα = 0. y² ©Û: F" | 1 nα − 0| < ε, = 1 nα < ε, = n α > 1 ε n > 1 ε 1/α , N = [(1 ε ) 1/α] + 1. Ö: ∀ ε > 0, ∃ N = [(1 ε ) 1/α] + 1, n > N , k 1 nα − 0 < 1 Nα < 1 1/ε = ε, u´ lim n→∞ 1 nα = 0. 6/47 kJ Ik J I £ ¶ '4 òÑ
1.2.51.2.61.2.91.2.101.2.11.2.21.2.31.2.41.2.71.2.8例2求证:lim(Vn+i-Vn)=0.证明因为1an=Vn+i-Vn=Vn+i+Vnr所以>0,N=[]+1,当n>N时,有lan-E.这说明 lim (vn+i-Vn)=0.nx返回全屏关闭退出7/47
1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10 ~ 2 ¦y: lim n→∞ ( √ n + 1 − √ n) = 0. y² Ï an = √ n + 1 − √ n = 1 √ n + 1 + √ n < 1 √ n , ¤± ∀ ε > 0, ∃ N = [ 1 ε 2 ] + 1, n > N , k |an − 0| < 1 √ n < 1 √ N < 1 p 1/ε2 = ε, ù`² lim n→∞ ( √ n + 1 − √ n) = 0. 7/47 kJ Ik J I £ ¶ '4 òÑ
1.2.61.2.101.2.11.2.21.2.31.2.41.2.51.2.71.2.81.2.9lim ai+a2+...+an例3设数列{an1收敛于a.求证:a.n?8证明:因为lim an=a,根据数列收敛的定义,对任意正数e,存在自然数 ni使得当 n >ni时,有lan-al< ε/2.现取自然数 n2使得2(la1 - al + [a2 - a| +..+ [ani - al)n2 >E于是当 n> N =n1+nz时,有a1+a2+..+an十an-aa1+a一a+nnal+...+lan-aa-la2-a+..ai+7ani+1-aiala2一a+++an-ani+11n2n-niEE22a1+a2+.+an根据极限的定义知,有lim=a.nnα返回全屏关闭退出8/47
1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10 ~ 3 ê {an} Âñu a. ¦yµ lim n→∞ a1+a2+···+an n = a. y²µÏ lim n→∞ an = a, âêÂñ½Â§é?¿ê ε, 3g ,ê n1 ¦ n > n1 §k |an − a| < ε/2. yg,ê n2 ¦ n2 > 2(|a1 − a| + |a2 − a| + · · · + |an1 − a|) ε . u´ n > N = n1 + n2 §k a1 + a2 + · · · + an n − a = a1 − a + a2 − a + · · · + an − a n 6 |a1 − a| + |a2 − a| + · · · + |an1 − a| n + |an1+1 − a| + · · · + |an − a| n 6 |a1 − a| + |a2 − a| + · · · + |an1 − a| n2 + |an1+1 − a| + · · · + |an − a| n − n1 6 ε 2 + ε 2 = ε. â4½Â§k lim n→∞ a1+a2+···+an n = a. 8/47 kJ Ik J I £ ¶ '4 òÑ
1.2.61.2.81.2.91.2.101.2.11.2.21.2.31.2.41.2.51.2.7数列an不以a为极限的陈述若存在一个正数ε0.使得对任意自然数N,都可以找到自然数n>N满足|an一al≥Eo,则[an}不以a为极限从几何上说就是存在一个以a为中心的开区间,使得这个开区间之外有无穷多个与该数列对应的点anaN+1XEaa4ea3a2a4aai返回全屏关闭退出I49/47
1.2.1 1.2.2 1.2.3 1.2.4 1.2.5 1.2.6 1.2.7 1.2.8 1.2.9 1.2.10 ê {an} ر a 4ã e3ê ε0, ¦é?¿g,ê N, ѱég,ê n > N ÷v |an − a| > ε0, K {an} ر a 4. lAÛþ`Ò´3± a ¥%m«m, ¦ùm«m k áõTêéA:. x ( . . . . . ) . 1 a4 − εa a a + εa a3 a2 aN aN+1 9/47 kJ Ik J I £ ¶ '4 òÑ