故:04=o=gl 0B=0m=0 5.证明:CG=1,C0=,m2a,=君 证:tan2a。= 4D2 CA o,-a, 证: 故: CG=Ts CG,=Tmn 2 Examplel试用解析法及图解法求图示应力状态指定截面上的应力 Given:,=60MPa,=10MPa =20MPa, x=-10MPa 10 a=30° Solution: (1)解析法:
故: = = = = 1 min 2 1 max 1 OB OA 5.证明: 1 CG1 = max , CG2 = min , tan 2 0 = 证: x y xy CA AD − = − = − 2 tan 2 0 证: 2 2 1 2 xy x y CG CD + − = = 2 2 2 2 xy x y CG CD + − = − = − 故: = = 2 min 1 max CG CG 或: 2 1 2 min max − = Example1 试用解析法及图解法求图示应力状态指定截面上的应力 Given: x = 60MPa , xy = 10MPa y = 20MPa , yx = −10MPa = 30 Solution: (1)解析法:
0-040cw2a-1,m2a _60+20,60-20c0s60°-10sm60 2 -41.3MPa _60-20sm60°+10c0s60 =22.3wPa (2)图解法: 03o=42MPa】 T3=22MlPa Example2试用解析法、图解法求指定截面上的应力.(图中单位:Mpa) Given:,=-30MPa Tny =-10MPa (42,22) ,=10MPa x=10MPa a=-30* Solution: (1)解析法: 0w-0+88s2a-,m2a 2 2 -30+10+-30-10co-60°)-10s-60') y 2 10 =-28.7MPa 7n=0,m2a+,s2a 2 =-30-10s-60°)-10c0s-60)) 2 =12.32Pa (2)图解法:
41.3MPa cos60 10sin 60 2 60 20 2 60 20 cos 2 sin 2 2 2 30 = − − + + = − − + + = xy x y x y 22.3MPa sin 60 10cos60 2 60 20 sin 2 cos 2 2 30 = + − = + − = xy x y (2)图解法: = = MPa MPa 22 42 30 30 Example 2 试用解析法、图解法求指定截面上的应力。(图中单位:Mpa) Given: x = −30MPa xy = −10MPa y = 10MPa yx = 10MPa = −30 Solution: (1)解析法: 28.7MPa cos( 60 ) ( 10)sin( 60 ) 2 30 10 2 30 10 cos 2 sin 2 2 2 30 = − − − − − − − + − + = − − + + = − xy x y x y 12.32MPa sin( 60 ) 10cos( 60 ) 2 30 10 sin 2 cos 2 2 30 = − − − − − = + − = − xy x y (2)图解法: