3.1.13.1.43.1.63.1.73.1.23.1.33.1.5例6求下列分段函数的导函数α, ≥0f(α) =α,<0解函数f()由函数=≥o)以及y=(o)在=o处拼接而成.当>0时,f(α)=3c2当<0时,f'(α)=2α,当=0时(Aa)3f(O +△a)-f(O)limlim=0AaArA2-0+A→0+(A)2f(O +△α) -f(o)limlim=0AaAaAa-0A-0所以3c2,>0f'(α) =0,α=02,a<o返回全屏关闭退出I=I11/41
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 ~ 6 ¦e©ã¼ê¼ê f(x) = x 3 , x > 0 x 2 , x < 0 ) ¼ê f(x) d¼ê y = x 3 (x > 0) ±9 y = x 2 (x < 0) 3 x = 0 ? © ¤. x > 0 , f 0 (x) = 3x 2 , x < 0 , f 0 (x) = 2x, x = 0 , lim ∆x→0+ f(0 + ∆x) − f(0) ∆x = lim ∆x→0+ (∆x) 3 ∆x = 0 lim ∆x→0− f(0 + ∆x) − f(0) ∆x = lim ∆x→0− (∆x) 2 ∆x = 0 ¤± f 0 (x) = 3x 2 , x > 0 0, x = 0 2x, x < 0 11/41 kJ Ik J I £ ¶ '4 òÑ
3.1.73.1.13.1.23.1.33.1.43.1.53.1.6定理1设f(α)在αo可导,则f()在Co连续.换句话说.如果函数在一点Co不连续,则显然在Co处不可导证明由已知条件,极限f(α) - f(co)= f'(o)limT→TO-o存在.所以f(α) - f(co)lim (f(α) 一 f(aco)) = limTTOTTO-cof(α) - f(co)lim (α - co)lim三T-→-oT→TO= f'(co) · 0 = 0.由此得lim f(α) = f(co),T→TO即,f(α)在 o连续返回全屏关闭退出II12/41
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 ½n 1 f(x) 3 x0 , K f(x) 3 x0 ëY. é{`, XJ¼ê3: x0 ØëY, Kw,3 x0 ?Ø. y² d®^, 4 lim x→x0 f(x) − f(x0) x − x0 = f 0 (x0) 3. ¤± lim x→x0 (f(x) − f(x0)) = lim x→x0 f(x) − f(x0) x − x0 (x − x0) = lim x→x0 f(x) − f(x0) x − x0 lim x→x0 (x − x0) = f 0 (x0) · 0 = 0. dd lim x→x0 f(x) = f(x0), =, f(x) 3 x0 ëY. 12/41 kJ Ik J I £ ¶ '4 òÑ