例22设矩阵 4 103 A= B=-11 210 求乘积AB和BA 4 103 解:A2B32-(210 20 10 73
例2.2 设矩阵 , 2 1 0 1 0 3 A , 2 0 1 1 4 1 B 求乘积 AB 和 BA. 解: 2 0 1 1 4 1 2 1 0 1 0 3 A2 3 B 3 2 7 3 10 1
103 B 3×2412×3 261 12 1-3 206 注:AB≠BA即矩阵乘法不满足交换律
2 1 0 1 0 3 2 0 1 1 4 1 B 3 2 A2 3 2 0 6 1 1 3 6 1 12 注:AB BA 即矩阵乘法不满足交换律
例2.3设A B 23 C D 1-3 55 试证:(1)AB=0; (2)AC=AD
例 2.3 设 , 1 1 1 1 A , 2 1 2 1 B , 1 3 2 3 C 2 5 1 5 D 试证: (1) AB = 0 ; (2) AC = AD
AB= 1×(-2)+1×2 1×1+1×( 1)×(-2)+(-1)×2(-1)×1+(-1)×(-1) 00 00
证: 2 1 2 1 1 1 1 1 AB O 0 0 0 0 1 (2) 1 2 111 (1) (1) (2) (1) 2 (1)1 (1) (1)
30 Ac 30 (-3×1( 00( 3) 30 AD= 1-1八(25 30 0 0 故 AC= AD
1 3 2 3 1 1 1 1 AC 3 0 3 0 2 5 1 5 1 1 1 1 AD 故 AC = AD 1 2 11 13 1 (3) (1) 2 (1)1 (1)3 (1) (3) 3 0 3 0 111 2 1 (5) 15 (1)1 (1) 2 (1) (5) (1)5 3 3 0 0 3 3 0 0