α-EE=α-xβXβ能级:Ei=α+1.618β(x1 = - 1.618)(x2 = - 0.618)Ez=α+0.618βE3=α-0.618β(x3 = 0.618)E,=α-1.618β(x4 = 1.618)E4=α-1.618βE3=α-0.618β2p=E2=α+0.618βEi=α+1.618β
能级:E1= + 1.618 (x1 = − 1.618) E2= + 0.618 (x2 = − 0.618) E3= − 0.618 (x3 = 0.618) E4 = − 1.618 (x4 = 1.618) E x − = E= − x 2pz E1 = + E2 = + E3 = − E4 = −
将xi=-1.618代回久期方程组得:cx+c,=0C1=C4; C2=C3=1.618c1c,+cx+C, =0有:Φ,=C,V+1.618c,V2+1.618ciV+cV4C2 +Cgx+C4 =0Cg+C,x=0根据虾归一化条件[c (t +1.618/2 +1.618/; +4) dt =c(1? +1.6182 +1.6182 +1)=1得:C,=0.372利用c2、c,和c,与c,的关系得C2=0.602 Cs=0.602 c4=0.372 = 0.372 y, + 0.602V, + 0.602 ys + 0.372 V4
将x1= − 1.618代回久期方程组得: c1=c4; c2=c3=1.618c1 有:1 =c11+1.618c12+1.618c13+c14 根据1归一化条件 得: c1=0.372 利用c2 、c3和c4与c1的关系得 c2=0.602 c3=0.602 c4=0.372 1 = 0.3721 + 0.6022 + 0.6023 + 0.3724 1 2 1 2 3 2 3 4 3 4 0 0 0 0 c x c c c x c c c x c c c x + = + + = + + = + = ( ) ( ) 2 2 2 2 2 2 2 1 1 2 3 4 1 c d c + + + = + + + = 1.618 1.618 1 1.618 1.618 1 1
求解结果Ei=α+ 1.618β = 0.372 yi+ 0.602 z+ 0.602 y + 0.372 y4= 0.602 y1 + 0.372 V2 - 0.372 y3 - 0.602 y4E2=α+ 0.618βd= 0.602 yi- 0.372 y2- 0.372 y3 + 0.602 y4Es=α -0.618βΦ4 = 0.372 y1 - 0.602 y2 + 0.602 y3 - 0.372 y4E4=α -1.618βE4=α-1.618βE3=α-0.618β2pE2=α+0.618BEi=α+1.618β
1 = 0.3721+ 0.6022+ 0.6023 + 0.3724 2 = 0.6021 + 0.3722 − 0.3723 − 0.6024 3 = 0.6021− 0.3722− 0.3723 + 0.6024 4 = 0.3721 − 0.6022 + 0.6023 − 0.3724 E1= + 1.618 E2= + 0.618 E3= − 0.618 E4= − 1.618 求解结果 2pz E1 = + E2 = + E3 = − E4 = −
E4=α-1.618β解的讨论E3=α-0.618B++++0+电子组态为2pP=E2=α+0.618β离域元键的总能量Ei=α+1.618βED元=2E +2E,= 4α+4.472β离域元键键能E,=4α-(4α+4.472β)=-4.472βE2=α-β2p=定域元键EL元= 4(α+ β)O乙烯Ei=α+β离域能(DelocalizationEnergy))E,=EL元-Ep=-0.472β
2pz E1 = + E2 = + E3 = − E4 = − 解的讨论 电子组态为1 22 2 定域键 EL = 4( + ) 离域键的总能量 ED = 2E1 + 2E2 = 4 + 4.472 离域键键能 E= 4 − (4 + 4.472 ) = −4.472 2pz E1 = + E2 = − 离域能(Delocalization Energy) ED = EL − ED = −0.472 乙烯
d = +0.372 y, + 0.602 v, + 0.602 V,+ 0.372 y分子轨道d= + 0.602 w, + 0.372 V, - 0.372 y3- 0.602 波函数图形d,= + 0.602 y - 0.372 w, - 0.372 y, + 0.602 wΦ = + 0.372 y - 0.602 y, + 0.602 ys- 0.372ySE=α-1.618β贵分子平面一节面一子轨道特点o.E3=α-0.618βE2=α+0.618βo垂直键轴节面越多,能量越高888000E,=α+1.618βd18000
垂直键轴节面越多,能量越高 分子轨道 波函数图形 分子平面—节面—分子轨道特点 E4= − 1.618 E3= − 0.618 E2= + 0.618 E1= + 1.618 1 = +0.372 1 + 0.602 2 + 0.602 3 + 0.372 4 2 = + 0.602 1 + 0.372 2 − 0.372 3 − 0.602 4 3 = + 0.602 1 − 0.372 2 − 0.372 3 + 0.602 4 4 = + 0.372 1 − 0.602 2 + 0.602 3 − 0.372 4