§3 齐次线性方程组的基础解系 §4 非齐次线性方程组解的结构
文件格式: DOC大小: 347.5KB页数: 8
基本要求:理解矩阵的概念,熟练掌握矩阵的运算,理解逆矩阵并会求逆矩阵,了解分块矩阵。 矩阵是线性代数中重要的工具,我们先从线性方程组引出矩阵。 §1 矩阵的概念 §2 矩阵的运算
文件格式: DOC大小: 401.5KB页数: 8
第三章线性方程组 在第一、二章中,我们曾经以行列式和逆阵为工具解决了一类线性方程组 的求解问题。本章将系统地解决一般线性方程组的求解问题。所用的工具是克 莱姆法则、初等变换、向量等
文件格式: DOC大小: 192.5KB页数: 6
线性代数第一讲 概论 线性代数是一门普通的基础理论课,它被广泛地应用于科技的各个领域, 尤其在计算机日益普及的今天,求解线性方程组等问题已成为研究科技问题经 常遇到的课题。 线性代数重点研究应用科学中常用的矩阵法,线性方程组的基本知识,另 外行列式也是一个有力的工具,在讨论上述问题时都要用到。 本门课程的特点,既有繁琐和技巧性很强的数字计算,又有抽象的概念和 逻辑推理,在学习中,需要特别加强这两个方面的训练
文件格式: DOC大小: 228KB页数: 6
实践应用 问题一 三人合作效益分配问题 问题的提出: 一般来说,从事某一活动(比如经济活动、社会活动)的各个方面若能同李合作,往 往能够 获得比个人单独活动更大的效益或更小的开支。确定合理地分配这些效益(或分担这些费 用)的 方案是促成合作的前提,我们先研究一个简单的例子
文件格式: DOC大小: 262.5KB页数: 10
对应特征值礼=-1只有1个线性无关的特征向量,而特征方程的基础解系为5,全体特征向量为x=k1l1(k1≠0)例9设方阵A的特征值A1≠2,对应的特征向量分别为x1,x2,证明: (1)x1-x2不是A的特征向量;
文件格式: DOC大小: 266.5KB页数: 6
第六章二次型 变量x1,x2,…,xn的二次齐次多项式 f(x1,x2,,xn)=a1x2+2a12x1x2+2a13x1x3+…+2anx1xn +a22x2+2a23x2x3+…+2a2nx2xn +amx 称为n元二次型,简称为二次型 a∈R:称f(x1,x2,…,xn)为实二次型(本章只讨论实二次型) a∈C:称f(x1,x2,…,xn)为复二次型 6.1二次型的矩阵表示 1.矩阵表示:令an=a(>i),则有
文件格式: DOC大小: 481KB页数: 12
目的:对于实对称矩阵A(A=A),求正交矩阵Q(QQ=E), 使得QAQ=A.此时,称A正交相似于对角矩阵A 1.实对称矩阵的特征值与特征向量的性质 定理6a=A→∈R. 证设Ax=x(x≠0),x=(51,52,5n),则有 x=5+2++n>0
文件格式: DOC大小: 260.5KB页数: 6
第五章矩阵的相似变换 5.1矩阵的特征值与特征向量 定义:对于n阶方阵A,若有数λ和向量x≠0满足Ax=x,称λ为A 的 特征值,称x为A的属于特征值λ的特征向量 特征方程:Ax=λx(A-E)x=0或者(ae-A)x=0 (A-E)x=0有非零解det(-E)=0 det(E-A)=0 特征矩阵:A-λE或者λE-A
文件格式: DOC大小: 408KB页数: 9
4.5线性方程组解的结构 b 齐次方程组Ax=0 非齐次方程组Ax=b(b≠0) 结论:(1)[4b]→[d,Ax=b与Cx=d同解 (2)Ax=0有非零解兮rank4
文件格式: DOC大小: 308.5KB页数: 7
华东师范大学:《迭代方法与预处理》课程教学课件(迭代方法与预处理)第三讲 定常迭代法(主讲:潘建瑜)厦门大学数学科学学院:《高等代数》课程教学资源(考研竞赛题选)行列式电子科技大学:《图论及其应用 Graph Theory and its Applications》研究生课程教学资源(课件讲稿)16 匹配与因子分解(偶图的匹配问题)《经济数学基础》课程PPT教学课件(微积分)第5章 定积分《高等数学》课程教学资源:第八章 多元函数微分学(8.7)微分法在几何上的应用东南大学远程教育:《离散数学》课程教学资源(PPT课件讲稿)第一章 数理逻辑(命题逻辑)香港中文大学:《数学史》几何三十载《高等数学》课程教学资源(PPT课件)第九章 多元函数微分法及其应用 9-2 第二节 偏导数《高等数学》课程教学资源(自测题B)第5章 定积分及其应用中国科学院:《数值计算方法》解线性代数方程组的直接方法武汉大学:《数值分析》课程教学资源(PPT课件讲稿)第五章 函数逼近