第一节对弧长的曲线积分 一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法 三、小结 第二节对坐标的曲面积分 一、对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算方法 三、两类曲面积分之间的关系 第三节格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的条件 三、二元函数的全微分求积 四、曲线积分的基本定理 第四节对面积的曲面积分 一、概念的引入 二、对面积曲面积分的概念与性质 三、对面积曲面积分的计算方法 第五节对坐标的曲面积分 三、两类曲面积分之间的关系 第六节高斯公式通量与散度 一、高斯公式 二、简单应用 三、物理意义——通量与散度 第七节 斯托克斯(Stokes)公式环流量与旋度 一、斯托克斯公式 三、环流量与旋度
文件格式: PDF大小: 16.8MB页数: 233
第一节二重积分的概念与性质 第二节二重积分的计算法 第三节三重积分 第四节重积分的应用 第五节含参变量的积分
文件格式: PDF大小: 15.72MB页数: 208
第一节多元函数的基本概念 一、平面点集 二、多元函数概念 三、多元函数的极限 四、多元函数的连续性 第二节偏导数 一、偏导数的定义及其计算法 二、高阶偏导数 第三节全微分 一、全微分的定义 二、全微分在近似计算中的应用 第四节多元复合函数的求导法则 一、多元复合函数求导的链式法则 二、多元复合函数的全微分 第五节隐函数的求导公式 一、一个方程的情形 二、方程组的情形 第五节多元函数微分学的几何应用 一、一元向量值函数及其导数 二、空间曲线的切线与法平面 三、曲面的切平面与法线 第七节方向导数与梯度 一、方向导数 二、梯度 三、物理意义 第七节 一、多元函数的极值 二、最值应用问题 三、条件极值
文件格式: PDF大小: 16.33MB页数: 192
第一节向量及其线性运算 一、空间直角坐标系 二、向量概念 三、向量的线性运算 四、利用坐标作向量的线性运算 五、向量的模、方向角、投影 第二节数量积向量积 一、两向量的数量积 二、两向量的向量积 第三节曲面及其方程 一、曲面方程的概念 二、常见曲面方程 三、二次曲面 第四节空间曲线及其方程 一、空间曲线的一般方程 二、空间曲线的参数方程 三、空间曲线在坐标面上的投影 第五节平面及其方程 一、平面的点法式方程 二、平面的一般方程 三、两平面的夹角 第六节直线及其方程 一、直线的一般方程 二、直线的对称式方程 三、线面间的位置关系
文件格式: PDF大小: 18.78MB页数: 227
第一节微分方程的基本概念 (Basic concept of differential equations) 一问题的提出 二微分方程的定义 (Definition of differential equations) 三 主要问题——求方程的解 四 小结思考判断题 第二节可分离变量的微分方程 (Differential equations of the variables separated) 可分离变量的微分方程 二 典型例题 小结与思考题 第三节齐次方程 (Homogeneous equation) 一齐次方程 二可化为齐次的方程 三小结思考题 第四节一阶线性微分方程 (Linear differential equation of first order) 一线性方程 (Linear differential equation) 二伯努利方程 (Bernoulli differential equation) 小结 思考判断题 第五节全微分方程 (Total differential equation) -全微分方程及其求法 二积分因子法 小结与思考题 第六节可降阶的高阶微分方程 y(\=f(x,y,..,y(\-)型 二y\=f(x,y',.·,y(\-①)型 恰当导数方程 四齐次方程 五小节与思考题 第七节高阶线性微分方程 (Higher linear differential equation) 概念的引入 线性微分方程的解的结构 降阶法与常数变易法 四小结思考题 第八节常系数齐次线性微分方程 (Constant coefficient homogeneous linear differential equation) 一定义(Definition) 二二阶常系数齐次线性方程解法 三n阶常系数齐次线性方程解法 四小结与思考题 第九节常系数非齐次线性微分方程 (Constant coefficient non-homogeneous linear differential equation) 一f(x)=exPm(x)型 二f(x)=ex[P,(x)cos cax+P,(x)sin cax]型 三小结思考题
文件格式: PDF大小: 10.33MB页数: 137
本章中我们将用前面学过的定积分的知识来分析和解决一些几何、物理中的问题,其目的不仅是建立计算这些几何、物理的公式,而且更重要的还在于介绍运用元素法解决问题的定积分的分析方法
文件格式: PDF大小: 4.83MB页数: 57
第一节 定积分的概念 (Concept of Definite Integrals) 问题的提出 二 定积分的定义 三四 定积分存在的两个充分条件 定积分的几何意义 五定积分的性质 第二节微积分基本公式 一 积分上限函数及其导数 三 牛顿—莱布尼茨公式 四小结 五思考、判断题 第三节定积分的换元法与分部积分法 一问题的提出 定积分的换元法 定积分的分部积分法 五思考、判断题 第四节 反常积分 (ImproperIntegrals) 二无穷限的广义积分 无界函数的广义积分 四Γ-函数 五小结 六思考与判断题
文件格式: PDF大小: 8.05MB页数: 101
第一节 微分中值定理 第二节 洛必达法则 第三节 泰勒公式 第四节 函数的单调性与曲线的凹凸性 第五节 函数的极值与最大值最小值 第六节 函数图形的描绘 第七节 曲率
文件格式: PDF大小: 17.96MB页数: 221
第一节映射与函数 (Mapping and Function) 一问题的提出 二 函数基本概念 三 函数的几种特性 四五 复合函数、反函数 小结与思考判断题 第二节数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结 第三节 函数的极限 一、函数极限定义 二、函数极限的性质 三、小结思考判断题 第四节 无穷小与无穷大 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、小结思考题 第五节 极限运算法则 一、无穷小的运算性质 二、极限四则运算法则 三、求极限方法举例 四、复合函数的极限运算法则 五、小结思考题 第六节极限存在准则两个重要极限 一 极限存在的准则I 重要极限I 二极限存在的准则Ⅱ 重要极限Ⅱ 三小结与思考判断题 第七节无穷小的比较 问题的提出 二无穷小的比较 三等价无穷小替换 四小结与思考判断题 第八节函数的连续性与间断点 一、函数的连续性 二、函数的间断点 三、小结思考题 第九节连续函数的运算与 初等函数的连续性 连续函数的和、差、积、商的 连续性 反函数与复合函数的连续性 四小结与思考判断题 第十节 闭区间上连续函数的性质 有界性与最大值最小值定理 零点定理与介值定理 三小结思考判断题
文件格式: PDF大小: 27.64MB页数: 353
第一节不定积分的概念与性质 一问题的提出 二 原函数与不定积分的概念 三 基本积分公式 四不定积分的性质 五小结 六思考与判断题 第二节 换元积分法 (Substitution Rules) 二第一类换元法(凑微分法) 第二类换元法 四小结 五思考与判断题 第三节 分部积分法 (Integration by Parts) 二分部积分法 三小结 四思考与判断题 第四节 有理函数的积分 (Integration of several kinds of Functions) 二有理函数的积分 三三角函数有理式的积分 四简单无理函数的积分 六思考与判断题
文件格式: PDF大小: 7.18MB页数: 94