基于切面识别的房间隔缺损智能辅助诊断

针对超声心动图像质量差、噪声多,传统卷积神经网络架构对超声心动图像的学习能力有限、表达不充分的缺点,提出了一种基于标准切面识别的房间隔缺损(Atrial septal defect,ASD)智能辅助诊断模型。该模型通过对超声心动图像进行切面识别,充分融合其不同切面的语义特征,使得诊断的准确率得到明显提升。此外,还对其进行双边滤波保边去噪,并基于此模型搭建房间隔缺损智能辅助诊断系统(简称ASD辅助诊断系统)。结果表明,该ASD辅助诊断系统的准确率高达97.8%,且与传统卷积神经网络相比大大降低了假阴性率。
文件格式:PDF,文件大小:968.29KB,售价:3.24元
文档详细内容(约9页)
点击进入文档下载页(PDF格式)
共9页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录