探究: 已知:如图,四边形ABCD中,AB∥DC, AD∥BC, 求证:(1)AB=DC,AD=BC; (2)∠DAB=∠DCA,∠B=∠D, 证明:连接AC, (1)∵AB∥DC,AD∥BC, ∠BAC=∠DCA,∠BCA=∠DAC
探究: 已知:如图,四边形ABCD中,AB∥DC, AD∥BC, 求证:(1)AB=DC,AD=BC; (2)∠DAB=∠DCA,∠B=∠D, 证明:连接AC, (1) ∵AB∥DC,AD∥BC, ∴ ∠BAC=∠DCA,∠BCA=∠DAC
∠BCA=∠DAC 在△ABC和△CD4中,AC=CA ∠BAC=∠DCA △ABC≌△CDA(ASA) .AB=DC, AD=BC: (2)由(1)知:△ABC≌△CDA, ∠B=∠D, ∠DAB=∠BAC+∠DAC =∠DC4+∠BCA ∠DCB
在△ABC和△CDA中, BCA DAC AC CA BAC DCA = = = ∴ △ABC≌△CDA(ASA) ∴AB=DC,AD=BC; (2)由(1)知: △ABC≌△CDA, ∴∠B=∠D, ∠DAB= ∠BAC+ ∠DAC = ∠DCA+ ∠BCA = ∠DCB