- 6 - D-甘露(糖)醇 (D-mannitol) H O C H 2 O H C C C C C H O H O H H 2 O H H H O H H 182.1 166~168 +23~+24 广泛存在于植物的 渗出液甘露聚糖、海 藻类 半乳糖醇 (galactitol) C6H14O6 182.1 188~189 马达加斯加甘露聚 糖 第二节 糖类化合物的结构 一、 单糖 碳水化合物分子中含有手性碳原子,即不对称碳原子,它连接 4 个不同的原 子或基团,在空间形成两种不同的差向异构体,立体构型呈镜面对称。 单糖的分子量较小,一般含有5或6 个碳原子,分子式为Cn(H2O)n,单糖是 D-甘油醛的衍生物,如图 3-1 所示。 D-阿拉伯糖 D-甘油醛 D-赤藓糖 D-苏糖 D-核糖 D-阿拉伯糖 D-木糖 D-来苏糖 D-阿洛糖 D-阿卓糖 D-葡萄糖 D-甘露糖 D-古洛糖 D-艾杜糖 D-半乳糖 D-塔罗糖 图 3-1 甘油醛产生的 8 种 D-己糖的示意图 单糖可以形成缩醛和缩酮,糖分子的羰基可以与糖分子本身的一个醇基反 应,形成半缩醛或半缩酮,分子内的半缩醛或半缩酮,形成五元呋喃糖环或更稳 定的六元吡喃糖环。例如,葡萄糖分子的C5羟基和C1羟基反应(图 3-2),C5旋转 180°使氧原子位于环的主平面,而C6处于平面的上方,当葡萄糖分子的C1成为半 缩醛结构中的成分时,它连接 4 个不同的基团,因而C1是手性碳原子,可形成立 体构型不同的α和β两种异头物
- 6 - D-甘露(糖)醇 (D-mannitol) H O C H 2 O H C C C C C H O H O H H 2 O H H H O H H 182.1 166~168 +23~+24 广泛存在于植物的 渗出液甘露聚糖、海 藻类 半乳糖醇 (galactitol) C6H14O6 182.1 188~189 马达加斯加甘露聚 糖 第二节 糖类化合物的结构 一、 单糖 碳水化合物分子中含有手性碳原子,即不对称碳原子,它连接 4 个不同的原 子或基团,在空间形成两种不同的差向异构体,立体构型呈镜面对称。 单糖的分子量较小,一般含有5或6 个碳原子,分子式为Cn(H2O)n,单糖是 D-甘油醛的衍生物,如图 3-1 所示。 D-阿拉伯糖 D-甘油醛 D-赤藓糖 D-苏糖 D-核糖 D-阿拉伯糖 D-木糖 D-来苏糖 D-阿洛糖 D-阿卓糖 D-葡萄糖 D-甘露糖 D-古洛糖 D-艾杜糖 D-半乳糖 D-塔罗糖 图 3-1 甘油醛产生的 8 种 D-己糖的示意图 单糖可以形成缩醛和缩酮,糖分子的羰基可以与糖分子本身的一个醇基反 应,形成半缩醛或半缩酮,分子内的半缩醛或半缩酮,形成五元呋喃糖环或更稳 定的六元吡喃糖环。例如,葡萄糖分子的C5羟基和C1羟基反应(图 3-2),C5旋转 180°使氧原子位于环的主平面,而C6处于平面的上方,当葡萄糖分子的C1成为半 缩醛结构中的成分时,它连接 4 个不同的基团,因而C1是手性碳原子,可形成立 体构型不同的α和β两种异头物
- 7 - O R O R C H R O H C O O H 2 C H O H O H O H H O H O O H O H O H C H O H 2 H O H O 2 O H O H C H O H O H o o O O α-D-吡喃葡萄糖 吡喃 D-葡萄糖 呋喃 β-D-吡喃葡萄糖 图 3-2 D-葡萄糖的环形和异头结构 天然葡萄糖属于D异构系列,它还有一个镜像分子L异构系列。α-D-型中异 头碳原子C1连接的氧原子与葡萄糖手性碳原子C5的氧原子在分子的同一侧,而β -D-型C1连接的氧原子与C5的氧原子处在分子的异侧。如果用哈沃斯(Haworth) 环结构表示,α-吡喃葡萄糖异头碳原子的氧和C6在异侧,而β-吡喃葡萄糖的异 头碳原子的氧和哈沃斯环形的羟甲基C6在同一侧。 除C1外的任何一种手性构型有差别的糖都称为差向异构体,例如,D-甘露糖 是D-葡萄糖的C2差向异构体,D-半乳糖为D-葡萄糖的C4差向异构体。因此,一个 6 碳醛糖有 16 种异构体,其中 8 种为D异构系列,另 8 种是它们的差向异构体L 异构系列。在自然界中L-糖系列比D异构系列少很多,但具有重要的生化作用。 L-阿拉伯糖和L-半乳糖是食品中存在的两种L-糖,均为一些多糖的糖基单元。 ~OH ~OH ~OH C H O H H O O H O H 2 2 O H O H H O C H O H 2 O H O H H O C H O H O O O D-葡萄糖 D-甘露糖 D-半乳糖 ~OH 表示半缩醛羟基 天然存在的糖环结构实际上并不像哈沃斯表示的投影式平面图,吡喃糖有如 下所示的椅式和船式两种不同构象。 1 2 3 4 5 1 3 2 4 5 O O 4 C1(椅式) 1 B(船式)
- 7 - O R O R C H R O H C O O H 2 C H O H O H O H H O H O O H O H O H C H O H 2 H O H O 2 O H O H C H O H O H o o O O α-D-吡喃葡萄糖 吡喃 D-葡萄糖 呋喃 β-D-吡喃葡萄糖 图 3-2 D-葡萄糖的环形和异头结构 天然葡萄糖属于D异构系列,它还有一个镜像分子L异构系列。α-D-型中异 头碳原子C1连接的氧原子与葡萄糖手性碳原子C5的氧原子在分子的同一侧,而β -D-型C1连接的氧原子与C5的氧原子处在分子的异侧。如果用哈沃斯(Haworth) 环结构表示,α-吡喃葡萄糖异头碳原子的氧和C6在异侧,而β-吡喃葡萄糖的异 头碳原子的氧和哈沃斯环形的羟甲基C6在同一侧。 除C1外的任何一种手性构型有差别的糖都称为差向异构体,例如,D-甘露糖 是D-葡萄糖的C2差向异构体,D-半乳糖为D-葡萄糖的C4差向异构体。因此,一个 6 碳醛糖有 16 种异构体,其中 8 种为D异构系列,另 8 种是它们的差向异构体L 异构系列。在自然界中L-糖系列比D异构系列少很多,但具有重要的生化作用。 L-阿拉伯糖和L-半乳糖是食品中存在的两种L-糖,均为一些多糖的糖基单元。 ~OH ~OH ~OH C H O H H O O H O H 2 2 O H O H H O C H O H 2 O H O H H O C H O H O O O D-葡萄糖 D-甘露糖 D-半乳糖 ~OH 表示半缩醛羟基 天然存在的糖环结构实际上并不像哈沃斯表示的投影式平面图,吡喃糖有如 下所示的椅式和船式两种不同构象。 1 2 3 4 5 1 3 2 4 5 O O 4 C1(椅式) 1 B(船式)
- 8 - 很多己糖以相当刚性的且在热力学上稳定的椅式构象存在,只有少数是韧性 的船式构象,还有其他几种构象,例如半椅式和邻位交叉式构象,但都因能量较 高而不常见。 一般规律是,稳定的环构象是其全部或大多数庞大基团相对环轴为平伏键, 而环的最小取代成分(氢)为竖直键。 呋喃糖比吡喃糖稳定性低,可迅速出现所谓信封式和扭曲式的平衡混合物。 呋喃糖和吡喃糖环的构象已经用核磁共振波谱法测定,提供了很多关于单糖在溶 液中的构象知识,其结构模型有助于观察和了解它的三维空间结构。 O O 信封式 扭曲式 二、 糖苷 如上所述,糖分子的羰基与一个醇基结合生成半缩醛或半缩酮,并在原来羰 基位置形成一个新的手性中心。如果将糖溶解于微酸性乙醇中,半缩醛或半缩酮 形式的糖和醇反应生成缩醛或缩酮。在这种混合缩醛或缩酮产物中,溶剂醇构成 分子的一部分,糖本身的醇基是另一部分,脱水形成的产物称为糖苷。糖苷中的 糖部分称为糖基,非糖部分称为配基。 ~OH ~OH 2 O H O H H O C H O H + R O H H + 2 O H O H H O C H O H + H O2 O O D-葡萄糖 烷基 D-吡喃葡萄糖苷 糖苷通常包含一个呋喃糖环或一个吡喃糖环,新形成的手性中心有α或β型 两种。因此,D-吡喃葡萄糖应看成是α-D-和β-D-异头体的混合物,形成的糖苷 也是α-D-和β-D-吡喃葡萄糖苷的混合物。 在酸催化剂作用下生成糖苷的反应是可逆的,若要得到高产率糖苷,在反应 过程中必须除去反应中生成的水。由于吡喃糖苷比呋喃糖苷稳定,所以它是主要 的糖苷产物。反应进行一段时间后,几乎不存在呋喃糖苷,只是在糖基化反应刚 开始的阶段,呋喃糖苷才占主要部分。糖基是指除去异头碳上羟基后剩下的糖残 基。 形成糖苷的配基不只是醇基,例如,糖和硫醇RSH反应能够得到硫糖苷,与 胺(RNH2)反应生成氨基糖苷
- 8 - 很多己糖以相当刚性的且在热力学上稳定的椅式构象存在,只有少数是韧性 的船式构象,还有其他几种构象,例如半椅式和邻位交叉式构象,但都因能量较 高而不常见。 一般规律是,稳定的环构象是其全部或大多数庞大基团相对环轴为平伏键, 而环的最小取代成分(氢)为竖直键。 呋喃糖比吡喃糖稳定性低,可迅速出现所谓信封式和扭曲式的平衡混合物。 呋喃糖和吡喃糖环的构象已经用核磁共振波谱法测定,提供了很多关于单糖在溶 液中的构象知识,其结构模型有助于观察和了解它的三维空间结构。 O O 信封式 扭曲式 二、 糖苷 如上所述,糖分子的羰基与一个醇基结合生成半缩醛或半缩酮,并在原来羰 基位置形成一个新的手性中心。如果将糖溶解于微酸性乙醇中,半缩醛或半缩酮 形式的糖和醇反应生成缩醛或缩酮。在这种混合缩醛或缩酮产物中,溶剂醇构成 分子的一部分,糖本身的醇基是另一部分,脱水形成的产物称为糖苷。糖苷中的 糖部分称为糖基,非糖部分称为配基。 ~OH ~OH 2 O H O H H O C H O H + R O H H + 2 O H O H H O C H O H + H O2 O O D-葡萄糖 烷基 D-吡喃葡萄糖苷 糖苷通常包含一个呋喃糖环或一个吡喃糖环,新形成的手性中心有α或β型 两种。因此,D-吡喃葡萄糖应看成是α-D-和β-D-异头体的混合物,形成的糖苷 也是α-D-和β-D-吡喃葡萄糖苷的混合物。 在酸催化剂作用下生成糖苷的反应是可逆的,若要得到高产率糖苷,在反应 过程中必须除去反应中生成的水。由于吡喃糖苷比呋喃糖苷稳定,所以它是主要 的糖苷产物。反应进行一段时间后,几乎不存在呋喃糖苷,只是在糖基化反应刚 开始的阶段,呋喃糖苷才占主要部分。糖基是指除去异头碳上羟基后剩下的糖残 基。 形成糖苷的配基不只是醇基,例如,糖和硫醇RSH反应能够得到硫糖苷,与 胺(RNH2)反应生成氨基糖苷
- 9 - 天然糖苷是糖基从核苷酸衍生物(例如腺苷二磷酸和尿苷二磷酸)中转移至 适当的配基上形成的产物,所生成的糖苷可以是α或β型的,这决定于酶的催化 专一性。 人类膳食中除低聚糖和多糖外,还有少量糖苷存在。它们的含量虽然不多, 但具有重要的生理效应,例如天然存在的强心苷(毛地黄苷和毛地黄毒苷)、皂 角苷(三萜或甾类糖苷),都是强泡沫形成剂和稳定剂,类黄酮糖苷使食品产生 苦味或其他风味和颜色,植物中形成糖苷有利于那些不易溶解的配基变成可溶于 水的物质,这对类黄酮和甾类糖苷特别重要,因为糖苷形式有利于他们在水介质 中输送。 几种复杂糖苷的甜味很强,例如斯切维苷(stevoside)、奥斯莱丁(osladin) 和甘草酸(glycyrrhizic acid)。但大多数糖苷,特别是当配基部分比甲基大时, 则可会产生微弱以至极强的苦味、涩味。醛糖或酮糖均可形成糖苷,例如 D-甘 露糖可形成缩醛,D-果糖(酮糖)可形成缩酮。 氧糖苷连接的 O-糖苷在中性和碱性 pH 环境中是稳定的,而在酸性条件下易 水解。食品中(除酸性较强的食品外)大多数糖苷都是稳定的,糖苷在糖苷酶的 作用下水解。 ~OH O C 2 H 5 2 O H O H H O C H O H O 2 5 + C H O H O C H O H H O O H O H 2 D-甘露糖 乙基-β-D 吡喃甘露糖苷 3 O C H H O + 3 H O C H O H 2 O H H O C H O H O O H O C H O H O H O H 2 D-果糖 甲基-β-D-吡喃果糖苷 酶 ~ O O H O H 2 O H O H H O C H O H O 2 O H O P O P O O O H C O H N O N + R O H O C H O H H O O H O H 2 O R O H 烷基 D-吡喃葡萄糖苷 对一种新糖苷的鉴定,可以采用化学方法和波谱方法。波谱方法中最适用的 是核磁共振波谱法,用 1~50mg 材料,便可确定异头构型、环构象以及环的大小
- 9 - 天然糖苷是糖基从核苷酸衍生物(例如腺苷二磷酸和尿苷二磷酸)中转移至 适当的配基上形成的产物,所生成的糖苷可以是α或β型的,这决定于酶的催化 专一性。 人类膳食中除低聚糖和多糖外,还有少量糖苷存在。它们的含量虽然不多, 但具有重要的生理效应,例如天然存在的强心苷(毛地黄苷和毛地黄毒苷)、皂 角苷(三萜或甾类糖苷),都是强泡沫形成剂和稳定剂,类黄酮糖苷使食品产生 苦味或其他风味和颜色,植物中形成糖苷有利于那些不易溶解的配基变成可溶于 水的物质,这对类黄酮和甾类糖苷特别重要,因为糖苷形式有利于他们在水介质 中输送。 几种复杂糖苷的甜味很强,例如斯切维苷(stevoside)、奥斯莱丁(osladin) 和甘草酸(glycyrrhizic acid)。但大多数糖苷,特别是当配基部分比甲基大时, 则可会产生微弱以至极强的苦味、涩味。醛糖或酮糖均可形成糖苷,例如 D-甘 露糖可形成缩醛,D-果糖(酮糖)可形成缩酮。 氧糖苷连接的 O-糖苷在中性和碱性 pH 环境中是稳定的,而在酸性条件下易 水解。食品中(除酸性较强的食品外)大多数糖苷都是稳定的,糖苷在糖苷酶的 作用下水解。 ~OH O C 2 H 5 2 O H O H H O C H O H O 2 5 + C H O H O C H O H H O O H O H 2 D-甘露糖 乙基-β-D 吡喃甘露糖苷 3 O C H H O + 3 H O C H O H 2 O H H O C H O H O O H O C H O H O H O H 2 D-果糖 甲基-β-D-吡喃果糖苷 酶 ~ O O H O H 2 O H O H H O C H O H O 2 O H O P O P O O O H C O H N O N + R O H O C H O H H O O H O H 2 O R O H 烷基 D-吡喃葡萄糖苷 对一种新糖苷的鉴定,可以采用化学方法和波谱方法。波谱方法中最适用的 是核磁共振波谱法,用 1~50mg 材料,便可确定异头构型、环构象以及环的大小
- 10 - H O 2 3 2 N a O P O H C O H R O H O N N N N 次黄嘌呤核苷 5’-磷酸,R=H 黄嘌呤核苷 5’-磷酸,R=OH 鸟嘌呤核苷 5’-磷酸,R=NH2 氮糖苷键连接的 N-糖苷不如 O-糖苷稳定,在水中易水解。然而,某些 N-糖 苷却十分稳定,例如 N-葡糖基胺。某些 N-葡糖基嘌呤和嘧啶,特别是次黄嘌呤 核苷、黄嘌呤核苷和鸟嘌呤核苷的 5′-磷酸衍生物,是风味增强剂(见上图)。 N-糖苷(糖基胺)在水中不稳定,通过一系列复杂反应分解,同时溶液的颜 色变深,由最初的黄色变为深棕色。这些反应是引起麦拉德褐变的原因,关于这 一点将在以后讨论。 S-糖苷的糖基和配基之间存在一个硫原子,这类化合物是芥子和辣根中天然 存在的成分,称为硫葡糖苷。天然硫葡糖苷酶可使糖苷配基裂解和分子重排(图 3-3)。芥子油的主要成分是异硫氰酸酯 RN=C=S,其中 R 为烯丙基、3-丁烯基、4- 戊烯基、苄基或其他基团。烯丙基硫葡糖苷是 S-糖苷这类化合物中研究得最多 的一种,通常叫做黑芥子硫苷酸钾(Sinigrin) ,某些食品的特殊风味是由这些化 合物产生的。近来发现 S-糖苷及其分解产物是食品中的天然毒素。 ~OH R N C S R C N + S + O C H O H O H H O O H 2 4 + + S N K H S O R C 2H O + S 3 2 N O S O K R C O H H O O H C H O H O 硫葡糖苷酸钾(glucosinolate) 硫葡糖苷酶 异硫氰酸酯 腈 图 3-3 硫葡糖苷酸钾的酶分解 如果形成的 O-糖苷的供氧基是同一个糖分子内的羟基,则生成分子内糖苷
- 10 - H O 2 3 2 N a O P O H C O H R O H O N N N N 次黄嘌呤核苷 5’-磷酸,R=H 黄嘌呤核苷 5’-磷酸,R=OH 鸟嘌呤核苷 5’-磷酸,R=NH2 氮糖苷键连接的 N-糖苷不如 O-糖苷稳定,在水中易水解。然而,某些 N-糖 苷却十分稳定,例如 N-葡糖基胺。某些 N-葡糖基嘌呤和嘧啶,特别是次黄嘌呤 核苷、黄嘌呤核苷和鸟嘌呤核苷的 5′-磷酸衍生物,是风味增强剂(见上图)。 N-糖苷(糖基胺)在水中不稳定,通过一系列复杂反应分解,同时溶液的颜 色变深,由最初的黄色变为深棕色。这些反应是引起麦拉德褐变的原因,关于这 一点将在以后讨论。 S-糖苷的糖基和配基之间存在一个硫原子,这类化合物是芥子和辣根中天然 存在的成分,称为硫葡糖苷。天然硫葡糖苷酶可使糖苷配基裂解和分子重排(图 3-3)。芥子油的主要成分是异硫氰酸酯 RN=C=S,其中 R 为烯丙基、3-丁烯基、4- 戊烯基、苄基或其他基团。烯丙基硫葡糖苷是 S-糖苷这类化合物中研究得最多 的一种,通常叫做黑芥子硫苷酸钾(Sinigrin) ,某些食品的特殊风味是由这些化 合物产生的。近来发现 S-糖苷及其分解产物是食品中的天然毒素。 ~OH R N C S R C N + S + O C H O H O H H O O H 2 4 + + S N K H S O R C 2H O + S 3 2 N O S O K R C O H H O O H C H O H O 硫葡糖苷酸钾(glucosinolate) 硫葡糖苷酶 异硫氰酸酯 腈 图 3-3 硫葡糖苷酸钾的酶分解 如果形成的 O-糖苷的供氧基是同一个糖分子内的羟基,则生成分子内糖苷