单纯形法的矩阵描述运筹学max z = C,B-"b +(C -C,B-'N)XXβ + B-'NX~ = B-"bXβ≥0,X≥0CNCBbXBXNB-1b1B-IN0-CgB-1bCn-CgB-1 NCNCBbXNXBbBN-6-宋主页上一页一页后退退出China University of Mining and Technology
-6- China University of Mining and Technology 运 筹 学 CB CN b XB XN b B N CB CN b XB XN B-1b I B-1N -CBB-1b 0 CN -CBB-1 N 0, 0 max ( ) 1 1 1 1 B N B N B N B N X X X B N X B b z C B b C C B N X 单纯形法的矩阵描述
运筹学单纯形法的矩阵描述maxz =CXβ +CXNBX,+ NX~+X, = bs.t.[X, ≥0 Xh ≥0, X, ≥0 (P)CBCNCs(0)bXNXBXsb1BN00CBCNCNCpCs(0)bXBXNXsB-1B-1bIB-N0-CgB-1-CB-1bC-C,B-1 N-7-王主页上一页下一页后退退出China University of Mining and Technology
-7- China University of Mining and Technology 运 筹 学 CB CN CS (0) b XB XN XS b B N I 0 CB CN 0 CB CN CS (0) b XB XN XS B-1b I B-1N B-1 -CBB-1b 0 CN -CBB-1 N -CBB-1 max . . ( ) 0, 0, 0 B B N N B N S B N S z C X C X BX NX X b s t P X X X 单纯形法的矩阵描述
运筹学单纯形法的矩阵描述注:(1)解的几种情况在单纯形表上的体现(Max型):-唯一最优解:终表非基变量检验数均小于零:多重最优解:终表非基变量检验数中有等于零的:无界解:任意表有正检验数相应的系数列均非正。无解:最优解的基变量中含有人工变量(2):检验数反Min型单纯形表与Max型的区别仅在于:号,即令负检验数中最小的对应的变量进基:当检验数均大于等于零时为最优。-8-来上一页一页后退退出主页China University of Mining and Technology1
-8- China University of Mining and Technology 运 筹 学 单纯形法的矩阵描述
运筹学$2.2改进单纯形法9China University of Mining and Technology
-9- China University of Mining and Technology 运 筹 学 §2.2 改进单纯形法
运筹学改进的单纯形法0231000bXBCBX,X5X2X3X40015[3]51T010036-1X2003-1101X100002310;30501/31/315X21/3PI10-2103-10O145800106X64/34/31/30000-151-10030001/4-1/4X2思考:P,分1P别与P“一00-1/61/21/30P”的关系20011/45/12-1/3X31000-20-5/6-1/3-1/2g:-10-宋主页页下一页后退退出China University of Mining and Technology-
-10- China University of Mining and Technology 运 筹 学 3 X2 5 1/3 1 1/3 1/3 0 0 15 0 X5 3 [1] 0 -2 -1 1 0 3 σj 0 2 3 1 0 0 0 X 3 1 -1 1 0 0 1 - 0 6 -15 1 0 0 -1 0 0 0 X6 8 4/3 0 4/3 1/3 0 1 6 0 1 x4 0 1 0 x5 0 0 0 x6 0 0 X5 18 2 3 -1 6 0 X4 15 1 [3] 1 5 CB XB b x1 x2 x3 θ 2 3 1 2 X3 1 0 0 1 5/12 -1/3 1/4 -5/6 -1/6 1/4 -1/3 1/3 0 -1/2 1/2 -1/4 σj -20 0 0 0 0 X1 5 1 0 0 0 X2 3 0 1 0 θ . . . . P1 P1 ′ P1 ″ 思考:P1分 别与P1 ′ 、 P1 〞的关系 改进的单纯形法