Content C1-4: Time-domain analysis of Linear and Time- invariant Networks ( Analysis of First Order Circuit) < Principles of Circuit analysis) a dynamic state and steady state Introductory Linear Circuit Analysis typical source signals(stimulating signal) definition of initial state(initial value, initial conditions Lecture 3 Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit 2009.09.22 ( Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The power of sinusoidal steady-state (self-study) he stability of networks, transfer functi Terms and diagrams of linear systems Terms and diagrams of linear circuits N N N network systems simplification mulation N to,(respe svstem Terms of linear system Terms of linear system u There is two origin of input signals(stimulation) d output(response) the response of load circuit(v(o), iD) >independent source Customarily: zero-input response Yzi-> stimulation by initial value >energy storage element whose initial value is not zero zero-state response Yzs-> stimulation by independent source Customarily: zero-input network(zi): independent source=0 overall response: Y(tFYzi(t)+Yzs(t) zero-state network(zs): initial value =0 plified expression Simplified expression output output (stimulation) (response) (response)
第 ?讲: 复习 《Principles of Circuit Analysis》 Introductory Linear Circuit Analysis Lecture 3 2009.09.22 Interest Focus Persistence Originality 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Terms and diagrams of linear systems: systems circuits networks Ns Ns NL NN NL Control Station UpLink DownLink Back bone Network Optical mm-wave WDM Sources M U X D E M U X λu1 λu2 ...λuN BS1 : EDFA λu1 λu2 ...λuN User Terminal Data Down Data Up BS2 BSn Mm-wave Wireless Link Photo Detector : : : : : λd1 λd2 ...λdN ROF communication system 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Terms and diagrams of linear systems: Ns Ns NL NN NL N x(t) y(t) simplification input ( stimulation ) output (response) A τ D ∫ ∑ 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Terms of linear system N x(t) y(t) Simplified expression input (stimulation) output (response) There is two origin of input signals (stimulation): ¾independent source ¾energy storage element whose initial value is not zero Customarily: zero-input network (zi): independent source=0 zero-state network (zs): initial value =0 Ns Ns NL NN NL *** 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 output (response) the response of load circuit (v(t),i(t)) Customarily: zero-input response Yzi -> stimulation by initial value zero-state response Yzs -> stimulation by independent source overall response: Y(t)=Yzi(t)+Yzs(t) N x(t) y(t) Ns Ns NL NN NL Terms of linear system *** Simplified expression input (stimulation) output (response)
C1-4: Time-domain analysis of Linear and Time-invariant Networks Content C1-4: Time-domain analysis of Linear and Time- Example: invariant Networks ( Analysis of First Order Circuit) ndependent a dynamic state and steady state typical source signals(stimulating signal definition of initial state(initial value, initial conditions) Energy storage element whose initial value is not zero Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit V(0)=0,1 \0: zero-input network, zero-input response (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance 10, V(0)+0: zero-state network, zero-state response The complex form of clements, law and theorem The power of sinusoidal steady-state (self-study) he stability of networks, transfer functi 1-4: Time-domain analysis of Linear and Time-invariant Networks" 1-4: Time-domain analysis of Linear and Time-invariant Networks I DC signal(omitted) f(t)=A 2 sinusoidal signal(omitted) f(t)=Acos(o t+p) 2u(t-1 3 unit step signal u(t)or U(t)or I(t u(0)=? 1t20+ (Singular signal) 2u(t-1)-2u(t-2) 2u(t-2 t Switch function o12 Wrong diagram? Right diagram!! 1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks Unit step signal u(t) Unit step signal u(t 2u(t-1)-2u(t-2) 2u(t-1) >to your homework u(t)
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 C1-4: Time-domain analysis of Linear and Time-invariant Networks Independent source Energy storage element whose initial value is not zero Vc(0) =0 ,Is=0: zero-input network, zero-input response Is=0 ,Vc(0) =0: zero-state network, zero-state response Example: Is + R - t=0 C Vc V0 (t) + - IR(t) 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 1 DC signal (omitted) 2 sinusoidal signal (omitted) 3 unit step signal u(t) or U(t) or 1(t) 1 0 u(t)= t≤0- t≥0+ t 0 u(0)=? Is R t=0 IR(t) Switch function f(t) = A f(t) = Acos(ω t ) +ϕ (Singular signal) *** Wrong diagram? C1-4: Time-domain analysis of Linear and Time-invariant Networks Is R t=0 IR(t) Switch function Right diagram!!! 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 0 t 1 u(t) 0 t 2 2u(t) 0 t 2 2u(t-1) 1 0 t 2 2u(t-1)-2u(t-2) 1 2 0 t -2u(t-2) 2 + C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 0 t 1 u(t) 0 t 2 2u(t-1) 1 0 t 2 2u(t-1)-2u(t-2) 1 2 Unit step signal u(t) 0 t f(t) 0 t f(t)u(t) causal signal *** Rectangular pulse C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 0 t 1 u(t) 0 t 2 1 ? Æto your homework 3 Step signal 4 4 C1-4: Time-domain analysis of Linear and Time-invariant Networks Unit step signal u(t)
C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks 4 unit pulse (1)={ Obviously to t Expressed by u(t): P()=[(1)-(t-△ C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks unit impulse signal 5 unit impulse signal 0t≠0 0t≠0 (1) t=0 (1)= haracteristieI: 8(n=limP(o=lim a(-(I-a)=r(o characteristic 3: Sampling integral definition f(no()dt=f(o) f(o(t-to )dt=f(o) 1-4: Time-domain analysis of Linear and Time-invariant Networks"' C1-4: Time-domain analysis of Linear and Time-invariant Networks unit impulse signal Question 60={0≠0 t(t)=? t=0 integral definition 广)d=00M=1 f(t)6(t-t0)=f(t0)6(t-t0 f(od(t-to )dt=f(to)
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 ⎪ ⎩ ⎪ ⎨ ⎧ > Δ Δ < < Δ < Δ = t t t 0 1/ 0 0 0 P ∫ ∞ −∞ PΔ (t)dt = 1 4 unit pulse signal Expressed by u(t): Obviously: [ ( ) ( )] 1 ( ) − − Δ Δ PΔ t = u t u t P (t) Δ C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 5 unit impulse signal characteristic 1: ⎩ ⎨ ⎧ ∞ = ≠ = 0 0 0 ( ) t t S t ∫ ∫ ∫ + − − ∞ −∞ = = = 0 0 ( ) ( ) ( ) 1 0 0 t dt t dt t dt t t δ δ δ '( ) ( ) ( ) ( ) lim ( ) lim 0 0 u t u t u t t P t = Δ − − Δ = = Δ→ Δ Δ→ δ δ (t) *** integral definition C1-4: Time-domain analysis of Linear and Time-invariant Networks characteristic 2: 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 ⎩ ⎨ ⎧ ∞ = ≠ = 0 0 0 ( ) t t δS(tt) characteristic 3: Sampling ⎩ ⎨ ⎧ = ≠ = (0) ( ) 0 0 0 ( ) ( ) f t t t f t t δ δ ⎩ ⎨ ⎧ − = ≠ − = 0 0 0 0 0 ( ) ( ) 0 ( ) ( ) f t t t t t t t f t t t δ δ ∫− = ς ς f (t)δ (t)dt f (0) ∫ + − − = ς ς δ 0 0 ( ) ( ) ( ) 0 0 t t f t t t dt f t C1-4: Time-domain analysis of Linear and Time-invariant Networks 5 unit impulse signal 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 unit impulse signal ⎩ ⎨ ⎧ ∞ = ≠ = 0 0 0 ( ) t t S t ∫ ∫ ∫ + − − ∞ −∞ = = = 0 0 ( ) ( ) ( ) 1 0 0 t dt t dt t dt t t δ δ δ δ (t) ∫ + − − = − = − ς ς δ δ δ 0 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 0 0 t t f t t t dt f t f t t t f t t t Samplin g *** Question: tδ (t) = ? C1-4: Time-domain analysis of Linear and Time-invariant Networks integral definition 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 The practical impulse signal: C1-4: Time-domain analysis of Linear and Time-invariant Networks
C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks 7 unit ramp signal square wave (t)=t(1) f()=(1)-a(t-1)+l(-2)-l(t-3)+ t≥0 aw-tooth wave r(1)=l(1)+t6(1)=l(1) f(1)=r(1)-l(t-1)-(1-2)-(-3) triangular wave f(t)=r(t)-2r(t-1)+2r(t-2)-2r(t-3)+ 1-4: Time-domain analysis of Linear and Time-invariant Networks Terms of linear systems unit step response s(y) and unit impulse response h(o) Unit step response(s(t)is the response of a circuit whose input is a unit step signal, Unit impulse response(h(t))is the response 0)[(0) put is a unit impulse signal. s(t)and h(t)are both zero-state response u(t-T 8(t)=dlu(t)]/dt h(t)=d[s(t)]/dt system N Content C1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time- invariant Networks DynamIc (Analysis of First Order Circuit) a dynamic state and steady state lOV typical source signals(stimulating signal) 10v(R R definition of initial state(initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit Complex Solution to Linear and Time-invariant Circuits) X X The complex form of elements, law and theor The power of sinusoidal steady-state (self-study) The stability of networks, transfer function Static circuits (DC Static circuits
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 7 unit ramp signal ⎩ ⎨ ⎧ ≥ < = = 0 0 0 ( ) ( ) t t t r t tu t r'(t) = u(t) + tδ (t) = u(t) tgα = 1 C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 square wave saw-tooth wave triangular wave f (t) = u(t) − u(t −1) + u(t − 2) − u(t − 3) + ..... f (t) = r(t) − u(t −1) − u(t − 2) − u(t − 3) − .... f (t) = r(t) − 2r(t −1) + 2r(t − 2) − 2r(t − 3) + ... C1-4: Time-domain analysis of Linear and Time-invariant Networks 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 A τ D ∫ ∑ system C1-4: Time-domain analysis of Linear and Time-invariant Networks ∫ ∫ δ(t) u(t) r(t) r(t) u(t) u(t −τ ) δ (t −τ ) D τ D 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 unit step response s(t) and unit impulse response h(t) Ns Ns NL NN NL Terms of linear systems Definition: Unit step response (s(t)) is the response of a circuit whose input is a unit step signal. Unit impulse response (h(t)) is the response of a circuit whose input is a unit impulse signal. N u(t) S(t) s(t) and h(t) are both zero-state response. N δ(t) h(t) δ(t)=d[u(t)]/dt h(t)=d[s(t)]/dt prove it。。。 *** Simplified expression 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Dynamic circuits? + - 10V C R + - v(t) t=t0 + - - + 1Ω 2Ω 2Ω 1V 2Ω 1V + - 10V R R + - v(t) t=t0 X X X ☺ Static circuits (DC Static circuits ) C1-4: Time-domain analysis of Linear and Time-invariant Networks
C1-4: Time-domain analysis of Linear and Time-invariant networks Cl-4: Time-domain analysis of Linear and Time-invariant Networks Dynamic circuits Sinusoidal steady-state circuit static response when sinusoidal Dynamic 10平v(+CR signals stimulate RIv( process state v(ti dynamic 1. Including dynamic elements St tatIc i State phasor method state 2. Switch the circuit Vt (complex method) Content Tea break/ C1-4: Time-domain analysis of Linear and Time invariant Networks (Analysis of First Order Circuit a dynamic state and steady state typical source signals(stimulating signal) definition of initial state(initial value, initial conditions) Time-domain analysis of dynamic circuits ( Complex Solution to Linear and Time-invariant Circuits) and admitance The complex form of clements, law and theorem The power of sinusoidal steady-state (self-study) The stability of transfer functon 1-4: Time-domain analysis of Linear and Time-invariant Networks C1-4: Time-domain analysis of Linear and Time-invariant Networks initial state(initial value, initial conditions) the state of network at t=t+ The state of network at t". (or ac)(steady state): When the dvnamic circu to steady state. there is no exchange of electromagnetic energy open a the inductance means short circuit. That is: v,(tFi(4-0 Static Static The determination of state state initial state→ ules for switching: If the cireuit is switched at t-t and the vdt)and i(t) are continuous while switching. That is: vdt. C 1. According to rules for switching 2. According to KCL and KvL
北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Dynamic circuits t0 t v(t) Dynamic process Static state switch + - 10V C R + - v(t) t=t0 1. Including dynamic elements 2. Switch the circuit *** C1-4: Time-domain analysis of Linear and Time-invariant Networks Static state 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 t0 t v(t) + - C R L cos(ωt) + - Sinusoidal steady-state circuit -- static response when sinusoidal signals stimulate. *** i(t) v(t) phasor method (complex method) VR(jω) Ii(jω) V(jω) C1-4: Time-domain analysis of Linear and Time-invariant Networks Static state Dynamic process switch Static state 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Tea break! Tea break! 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Content C1-4: Time-domain analysis of Linear and Timeinvariant Networks (Analysis of First Order Circuit) dynamic state and steady state typical source signals (stimulating signal) definition of initial state (initial value, initial conditions) Time-domain analysis of dynamic circuits C1-5: Analysis of sinusoidal Steady-state Circuit (Complex Solution to Linear and Time-invariant Circuits) Complex method and phasor method, impedance and admittance The complex form of elements, law and theorem The power of sinusoidal steady-state (self-study) The stability of networks, transfer function 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 Static state initial state (initial value, initial conditions) : the state of network at t=t0+ + - 10V C R + - v(t) t0 t=t0 t t=t0- t=t0+ v(t) The determination of initial stateÆ C1-4: Time-domain analysis of Linear and Time-invariant Networks switch Dynamic process Static state 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 北京大学 wwhu 北京大学 wwhu 北京大学 wwhu 北京大学 + - 10V C R + - v(t) t=t0 The state of network at t=t0-(or ∝)(steady state): When the dynamic circuit comes to steady state, there is no exchange of electromagnetic energy. The capacitance means open circuit. And the inductance means short circuit. That is: vL(t0-)= ic(t0-)=0 The determination of initial state: 1。According to Rules for switching 2。 According to KCL and KVL Rules for switching: If the circuit is switched at t=t0, and the current of capacitance/ the voltage of inductance is limited, the vC(t) and iL(t) are continuous while switching. That is: vc(t0- )=vc(t0+) ,i L(t0-)=iL(t0+) C1-4: Time-domain analysis of Linear and Time-invariant Networks