角动量耦合和Clebsch-Gordon系数
⻆动量耦合和 Clebsch-Gordon系数
e3JJTe2(6)(a)经典物理中,两个物体的角动量是作用在同一空间中因此总角动量等于各自角动量分量之和量子力学中,两个物体的角动量作用在不同的希尔伯特空间H12 = H1 ? H2
经典物理中,两个物体的⻆动量是作⽤在同⼀空间中, 因此总⻆动量等于各⾃⻆动量分量之和 量⼦⼒学中,两个物体的⻆动量作⽤在不同的 希尔伯特空间 H12 = H1 ⌦ H2 J⃗ 1 J⃗ 2 ⃗e3 ⃗e2 J⃗ 1 J⃗ 2 J⃗ ⃗e1 (a) (b)
e3JJTe2(a)(6)J=J12+iiJ=J+J[J1, J2] = 0[Ji, J] =[Jii+ J2i, J1i+ J2il =[J1i, Jii] +[J2i, J2i]iheijkJik+iheijkJ2k=iheijk(Jik+J2k)=二iheijkJk[J2, J] = 0
J ~ = J ~ 1 ⌦ ˆ I2 + ˆ I1 ⌦ J ~ 2 ⌘ J ~ 1 + J ~ 2 [J ~ 1, J ~ 2]=0 [Ji, Jj ]=[J1i + J2i, J1j + J2j ]=[J1i, J1j ]+[J2i, J2j ] = i~✏ijkJ1k + i~✏ijkJ2k = i~✏ijk (J1k + J2k) = i~✏ijkJk [J ~2, Jz]=0 J⃗ 1 J⃗ 2 ⃗e3 ⃗e2 J⃗ 1 J⃗ 2 J⃗ ⃗e1 (a) (b)
e3万Te(a)(6)[J2, J12, J2, J22][?, J2, J2, J2]耦合基矢因子化基矢[li1, j2, j, mi]][lj1,m1) [j2,m2) = [j1m1;j2m2]]ss
J⃗ 1 J⃗ 2 ⃗e3 ⃗e2 J⃗ 1 J⃗ 2 J⃗ ⃗e1 (a) (b) 因⼦化基⽮ {|j1, m1i ⌦ |j2, m2i ⌘ |j1m1; j2m2i} 耦合基⽮ {|j1, j2, j, mj i} θ L ⃗ S ⃗ (b) θ L ⃗ S ⃗ (a) θ L ⃗ S ⃗ (b) θ L ⃗ S ⃗ (a)
e3JJJe2(6)(a)总角动量为每个子系统角动量的量子化提供参考方向Ji=J-J2J2=(JJ2)2=J2+J2-2J2. J2J2.JJi(Ji + 1) = J(J + 1) + J2(J2 + 1) -h2J2 . J = J(J + 1) + J2(J2 + 1) - Ji(Ji + 1)622
总⻆动量为每个⼦系统⻆动量的量⼦化提供参考⽅向 J⃗ 1 J⃗ 2 ⃗e3 ⃗e2 J⃗ 1 J⃗ 2 J⃗ ⃗e1 (a) (b) J ~ 1 = J ~ J ~ 2 J1(J1 + 1) = J(J + 1) + J2(J2 + 1) 2J ~ 2 · J ~ ~2 J ~ 2 · J ~ = J(J + 1) + J2(J2 + 1) J1(J1 + 1) 2 ~2