Online Mirror Descent Online Mirror Descent At each round t=1,2,... X+1=arg min xEY {nx,Vf(x》+Dw(x,x} where D(x,y)=(x)-(y)-(Vu(y),x-y)is the Bregman divergence. .()is a required to be strongly convex and differentiable over a convex set. Strong convexity of will ensure the uniqueness of the minimization problem, and actually we further need some analytical assumptions (see later mirror map defintion)to ensure the solutions'feasibility in domain t. Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 6
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 6 Online Mirror Descent Online Mirror Descent
Online Mirror Descent So we can unify OGD and Hedge from the same view of OMD. x=arg min x Vfi(x))+Du(xx) x∈X Algo. OMD/proximal form () nt RegretT OGD x+1=agin{xfx》+号Ix-x x O(VT) x∈X N Hedge =arg min Vf())+KL() xilogi O(√Tlog N] x∈AN We also learn ONS for exp-concave functions,can it be included? Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 7
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 7 Online Mirror Descent • So we can unify OGD and Hedge from the same view of OMD. OGD Hedge Algo. OMD/proximal form • We also learn ONS for exp-concave functions, can it be included?
Recap:ONS in a view of Proximal Gradient Convex Problem Exp-concave Problem Property:f(x)≥fy)+Vf(y)T(x-y) Property:fi(x)>fi(y)+Vf(y)(x-y) +号Ix-yI6w ocD. ONS:A:=A:-1+Vfi(x:)Vfi(xt)T x1=咬刘】 Proximal type update: 1=agxx》+2玩K-x侣 Proximal type update: x∈X X41=arg min(,》+3引x-x. x∈X Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 8
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 8 Recap: ONS in a view of Proximal Gradient Convex Problem Property: Proximal type update: OGD: Exp-concave Problem Property: Proximal type update: ONS:
Online Mirror Descent Our previous mentioned algorithms can all be covered by OMD. Algo. OMD/proximal form () nt Regretr OGD for lxll O(VT) convex X4+1=argminn,Vf(x》+专k-x服 XEX OGD for strongly c. argemin ne(x Vfi(x) 'x侶 品 O(日logT) X∈X ONS for exp-concave X+1=are minn,Vfix》+5x-x房 Ix 17 O(号1ogT) x∈X Hedge for PEA x+1=arg min m(x,Vfi(x))+KL(xx) zi log xi T O(Tlog N) x∈△N Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 9
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 9 Online Mirror Descent • Our previous mentioned algorithms can all be covered by OMD. OGD for convex OGD for strongly c. ONS for exp-concave Hedge for PEA Algo. OMD/proximal form
General Regret Analysis for OMD OMD update: x=arg min n(x Vf()+(xx) x∈X Lemma 1(Mirror Descent Lemma).Let D be the Bregman divergence w.r.t.: X→R and assume少to be X--strongly convex with respect to a norm‖·‖.Then, ∀u∈X,the following inequality holds )-i四≤D,ux刘-D,ax+月+紧 2--Dv(Xt+1,x:) n bias term(range term) variance term(stability term) negative term Advanced Optimization(Fall 2023) Lecture 7.Online Mirror Descent 10
Advanced Optimization (Fall 2023) Lecture 7. Online Mirror Descent 10 General Regret Analysis for OMD OMD update: bias term (range term) variance term (stability term) negative term