其中:M为货币供给量,Y为国内生产总值,P为价格总指数 要求:(1)指出模型的内生变量、外生变量、先决变量: (2)写出简化式模型,并导出结构式参数与简化式参数之间的关系 (3)用结构式条件确定模型的识别状态 (4)从方程之间的关系出发确定模型的识别状态 (5)如果模型不可识别,试作简单的修改使之可以识别 (6)指出IS、ⅣV、2SLS中哪些可用于原模型第1、2个方程的参数估计。 6-25.独立建立一个包含3~4个方程的中国宏观经济模型,并完成模型的识别和估计(可以 采取本章中第五节的例子,将样本观测值扩大到2000年之后,自己独立完成) 四、习题解答 6-1 1)联立问题:经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单 方程所能描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须 用联立的计量经济学方程才能描述清楚。联立方程计量经济学模型以经济系统为硏究对 象,揭示经济系统中各部分、各因素之间的数量关系和系统的数量特征 2)行为方程:行为方程描述经济系统中变量之间的行为关系,主要是因果关系,例如用收 入作为消费的解释变量建立的方程 3)间接最小二乘法:先对关于内生解释变量的简化式方程采用普通最小二乘法估计简化式 参数,得到简化式参数估计量,然后通过参数关系体系,计算得到结构式参数的估计量。 4)识别问题:联立方程计量经济学模型是由多个方程组成,对方程之间的关系有严格的要 求,否则模型就可能无法估计。所以在进行模型估计之前首先要判断它是否可以估计, 这就是模型的识别。如果联立方程模型中某个结构方程不具有确定的统计形式,则称该 方程为不可识别。如果一个模型中的所有随机方程都是可以识别的,则认为该联立方程 模型系统是可以识别的。反过来,如果一个模型系统中存在一个不可识别的随机方程, 则认为该联立方程模型系统是不可以识别的。 5)二阶段最小二乘法:估计联立方程模型中的某个结构式方程时,先用普通最小二乘法对 其中内生解释变量的简化式进行估计,得到内生解释变量的估计值,用此估计值代替原 结构式方程中的内生解释变量,再对变换了的结构式方程用普通最小二乘法进行估计 6)三阶段最小二乘法:三阶段最小二乘法是估计联立方程模型全部结构方程的系统估计方 法,基本思路是3SLS=2SLS+GLS,即首先用两阶段最小二乘法估计模型系统中的每 个结构方程,然后再用广义最小二乘法估计模型系统 ⑦)简化式模型:将联立方程模型的每个内生变量表示成所有先决变量和随机误差项的函 数,即用所有先决变量作为每个内生变量的解释变量,所形成的模型称为简化式模型 8)不可识别:如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不 可识别。如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程系统是
其中:M 为货币供给量,Y 为国内生产总值,P 为价格总指数。 要求:(1)指出模型的内生变量、外生变量、先决变量; (2)写出简化式模型,并导出结构式参数与简化式参数之间的关系; (3)用结构式条件确定模型的识别状态; (4)从方程之间的关系出发确定模型的识别状态; (5)如果模型不可识别,试作简单的修改使之可以识别; (6)指出 ILS、IV、2SLS 中哪些可用于原模型第 1、2 个方程的参数估计。 6-25.独立建立一个包含 3~4 个方程的中国宏观经济模型,并完成模型的识别和估计(可以 采取本章中第五节的例子,将样本观测值扩大到 2000 年之后,自己独立完成)。 四、习题解答 6-1 1) 联立问题:经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单一 方程所能描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须 用联立的计量经济学方程才能描述清楚。联立方程计量经济学模型以经济系统为研究对 象,揭示经济系统中各部分、各因素之间的数量关系和系统的数量特征。 2) 行为方程:行为方程描述经济系统中变量之间的行为关系,主要是因果关系,例如用收 入作为消费的解释变量建立的方程。 3) 间接最小二乘法:先对关于内生解释变量的简化式方程采用普通最小二乘法估计简化式 参数,得到简化式参数估计量,然后通过参数关系体系,计算得到结构式参数的估计量。 4) 识别问题:联立方程计量经济学模型是由多个方程组成,对方程之间的关系有严格的要 求,否则模型就可能无法估计。所以在进行模型估计之前首先要判断它是否可以估计, 这就是模型的识别。如果联立方程模型中某个结构方程不具有确定的统计形式,则称该 方程为不可识别。如果一个模型中的所有随机方程都是可以识别的,则认为该联立方程 模型系统是可以识别的。反过来,如果一个模型系统中存在一个不可识别的随机方程, 则认为该联立方程模型系统是不可以识别的。 5) 二阶段最小二乘法:估计联立方程模型中的某个结构式方程时,先用普通最小二乘法对 其中内生解释变量的简化式进行估计,得到内生解释变量的估计值,用此估计值代替原 结构式方程中的内生解释变量,再对变换了的结构式方程用普通最小二乘法进行估计。 6) 三阶段最小二乘法:三阶段最小二乘法是估计联立方程模型全部结构方程的系统估计方 法,基本思路是 3SLS=2SLS+GLS,即首先用两阶段最小二乘法估计模型系统中的每一 个结构方程,然后再用广义最小二乘法估计模型系统。 7) 简化式模型:将联立方程模型的每个内生变量表示成所有先决变量和随机误差项的函 数,即用所有先决变量作为每个内生变量的解释变量,所形成的模型称为简化式模型。 8) 不可识别:如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不 可识别。如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程系统是
不可识别的 9)恰度识别:如果某一个随机方程具有一组参数估计量,称其为恰度识别 0)过度识别:如果某一个随机方程具有多组参数估计量,称其为过度识别 11)结构式模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经 济学方程系统称为结构式模型。结构式模型中的每一个方程都是结构方程,将一个内生 变量表示为其它内生变量、先决变量和随机误差项的函数形式,被称为结构方程的正规 形式 12)递归系统模型:联立方程模型BY+IX=N,如果 0 0 0 B2110 Y2k B1-B2 0 即在第1个方程中被解释变量为H1,解释变量全部为先决变量;在第2个方程中被解 释变量为}2’解释变量中除了作为第1个方程被解释变量的内生变量H外,全部为先 决变量:第3个方程…,依次类推。这类模型称为递归系统模型 13)先决变量:外生变量与滞后内生变量统称为先决变量。 14)参数关系体系:简化式参数与结构式参数之间的关系,称为参数关系体系。 6-2.经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单一方程所能 描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须用联立的计量 经济学方程才能描述清楚。所以与单方程适用于单一经济现象的研究相比,联立方程模型适 用于描述复杂的经济现象,即经济系统 6-3.对于联立方程模型系统而言,将变量分为内生变量和外生变量两大类,外生变量与滞 后内生变量又被统称为先决变量。内生变量是具有某种概率分布的随机变量,它是由模型系 统决定的,同时也对模型系统产生影响,内生变量一般都是经济变量。外生变量一般是确定 性变量,或者是具有临界概率分布的随机变量。外生变量影响系统,但本身不受系统的影响 外生变量一般是经济变量、条件变量、政策变量、虚变量 6-4.联立方程模型中,结构式模型中的每一个方程都是结构方程,简化式模型中每个方程 称为简化式方程,结构方程的方程类型如下: 行为方程 技术方程 随机方程制度方程 统计方程 定义方程 恒等方程{平衡方程 经验方程 其中,行为方程描述经济系统中变量之间的行为关系,主要是因果关系,例如用收入作 为消费的解释变量建立的方程:技术方程描述由技术决定的变量之间的关系,例如用总 产值作为净产值的解释变量建立的方程:制度方程描述由制度决定的变量之间的关系 例如用进口总额作为关税收入的解释变量建立的方程;统计方程描述由数据之间的相关
不可识别的。 9) 恰度识别:如果某一个随机方程具有一组参数估计量,称其为恰度识别。 10) 过度识别:如果某一个随机方程具有多组参数估计量,称其为过度识别。 11) 结构式模型:根据经济理论和行为规律建立的描述经济变量之间直接关系结构的计量经 济学方程系统称为结构式模型。结构式模型中的每一个方程都是结构方程,将一个内生 变量表示为其它内生变量、先决变量和随机误差项的函数形式,被称为结构方程的正规 形式。 12)递归系统模型:联立方程模型 Y + X = ,如果 = − − − − − − 1 0 0 0 1 0 0 1 0 1 21 31 32 1 2 3 g g g = − − − − − − − − − 11 12 1 21 22 2 1 2 k k g g gk 即在第 1 个方程中被解释变量为 Y1 ,解释变量全部为先决变量;在第 2 个方程中被解 释变量为 Y2 ,解释变量中除了作为第 1 个方程被解释变量的内生变量 Y1 外,全部为先 决变量;第 3 个方程…,依次类推。这类模型称为递归系统模型。 13)先决变量:外生变量与滞后内生变量统称为先决变量。 14)参数关系体系:简化式参数与结构式参数之间的关系,称为参数关系体系。 6-2.经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单一方程所能 描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须用联立的计量 经济学方程才能描述清楚。所以与单方程适用于单一经济现象的研究相比,联立方程模型适 用于描述复杂的经济现象,即经济系统。 6-3.对于联立方程模型系统而言,将变量分为内生变量和外生变量两大类,外生变量与滞 后内生变量又被统称为先决变量。内生变量是具有某种概率分布的随机变量,它是由模型系 统决定的,同时也对模型系统产生影响,内生变量一般都是经济变量。外生变量一般是确定 性变量,或者是具有临界概率分布的随机变量。外生变量影响系统,但本身不受系统的影响。 外生变量一般是经济变量、条件变量、政策变量、虚变量。 6-4.联立方程模型中,结构式模型中的每一个方程都是结构方程,简化式模型中每个方程 称为简化式方程,结构方程的方程类型如下: 行为方程 技术方程 随机方程 制度方程 统计方程 定义方程 恒等方程 平衡方程 经验方程 其中,行为方程描述经济系统中变量之间的行为关系,主要是因果关系,例如用收入作 为消费的解释变量建立的方程;技术方程描述由技术决定的变量之间的关系,例如用总 产值作为净产值的解释变量建立的方程;制度方程描述由制度决定的变量之间的关系, 例如用进口总额作为关税收入的解释变量建立的方程;统计方程描述由数据之间的相关
性决定的变量之间的关系,例如描述城镇居民收入与农村居民收入之间关系的方程。定 义方程是由经济学或经济统计学的定义决定的,例如国内生产总值等于第一、二、三产 业增加值之和:平衡方程是由变量所代表的指标之间的平衡关系决定的,例如政府消费 等于消费总额减去居民消费。经验方程仅描述由经验得到的数据之间的确定性关系,没 有什么实质性意义。 6-5.联立方程模型可以分为结构式模型和简化式模型。根据经济理论和行为规律建立的描 述经济变量之间直接关系结构的计量经济学方程系统称为结构式模型。结构式模型中的 每一个方程都是结构方程,将一个内生变量表示为其它内生变量、先决变量和随机误差 项的函数形式,被称为结构方程的正规形式。将联立方程模型的每个内生变量表示成所 有先决变量和随机误差项的函数,即用所有先决变量作为每个内生变量的解释变量,所 形成的模型称为简化式模型。 6-6.联立方程模型的识别状况可以分为可识别和不可识别,可识别又分为恰好识别和过度 识别。如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不可识 别,或者根据参数关系体系,在已知简化式参数估计值时,如果不能得到联立方程模型 中某个结构方程的确定的结构参数估计值,称该方程为不可识别。如果一个模型中的所 有随机方程都是可以识别的,则认为该联立方程模型系统是可以识别的。反过来,如果 个模型系统中存在一个不可识别的随机方程,则认为该联立方程模型系统是不可以识 别的。如果某一个随机方程具有一组参数估计量,称其为恰好识别;如果某一个随机方 程具有多组参数估计量,称其为过度识别。 6-7.定义一:如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不 可识别 定义二:如果联立方程模型中某些方程的线性组合可以构成与某一个方程相同的统计 形式,则称该方程为不可识别 定义三:根据参数关系体系,在已知简化式参数估计值时,如果不能得到联立方程模 型中某个结构方程的确定的结构参数估计值,则称该方程为不可识别。 6-8.联立方程计量经济学模型的结构式BY+IX=N中的第i个方程中包含g个内生变量 (含被解释变量)和k,个先决变量(含常数项),模型系统中内生变量和先决变量的数 目用g和k表示,矩阵(BI)表示第i个方程中未包含的变量(包括内生变量和先决 变量)在其它g-1个方程中对应系数所组成的矩阵。于是,判断第i个结构方程识别 状态的结构式条件为: 如果R(BI0)<g-1,则第i个结构方程不可识别; 如果R(BI0)=g-1,则第i个结构方程可以识别,并且 如果k-k;=8;-1,则第i个结构方程恰好识别, 如果k-k1>g1-1,则第i个结构方程过度识别。 其中符号R表示矩阵的秩。一般将该条件的前一部分称为秩条件,用以判断结构方程 是否识别:后一部分称为阶条件,用以判断结构方程恰好识别或者过度识别 6-9.单方程估计方法有:狭义的工具变量法(IV),间接最小二乘法(LS),两阶段最小二
性决定的变量之间的关系,例如描述城镇居民收入与农村居民收入之间关系的方程。定 义方程是由经济学或经济统计学的定义决定的,例如国内生产总值等于第一、二、三产 业增加值之和;平衡方程是由变量所代表的指标之间的平衡关系决定的,例如政府消费 等于消费总额减去居民消费。经验方程仅描述由经验得到的数据之间的确定性关系,没 有什么实质性意义。 6-5.联立方程模型可以分为结构式模型和简化式模型。根据经济理论和行为规律建立的描 述经济变量之间直接关系结构的计量经济学方程系统称为结构式模型。结构式模型中的 每一个方程都是结构方程,将一个内生变量表示为其它内生变量、先决变量和随机误差 项的函数形式,被称为结构方程的正规形式。将联立方程模型的每个内生变量表示成所 有先决变量和随机误差项的函数,即用所有先决变量作为每个内生变量的解释变量,所 形成的模型称为简化式模型。 6-6.联立方程模型的识别状况可以分为可识别和不可识别,可识别又分为恰好识别和过度 识别。如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不可识 别,或者根据参数关系体系,在已知简化式参数估计值时,如果不能得到联立方程模型 中某个结构方程的确定的结构参数估计值,称该方程为不可识别。如果一个模型中的所 有随机方程都是可以识别的,则认为该联立方程模型系统是可以识别的。反过来,如果 一个模型系统中存在一个不可识别的随机方程,则认为该联立方程模型系统是不可以识 别的。如果某一个随机方程具有一组参数估计量,称其为恰好识别;如果某一个随机方 程具有多组参数估计量,称其为过度识别。 6-7.定义一:如果联立方程模型中某个结构方程不具有确定的统计形式,则称该方程为不 可识别。 定义二:如果联立方程模型中某些方程的线性组合可以构成与某一个方程相同的统计 形式,则称该方程为不可识别。 定义三:根据参数关系体系,在已知简化式参数估计值时,如果不能得到联立方程模 型中某个结构方程的确定的结构参数估计值,则称该方程为不可识别。 6-8.联立方程计量经济学模型的结构式 Y+ X = 中的第 i 个方程中包含 gi 个内生变量 (含被解释变量)和 ki 个先决变量(含常数项),模型系统中内生变量和先决变量的数 目用 g 和 k 表示,矩阵 ( ) 0 0 表示第 i 个方程中未包含的变量(包括内生变量和先决 变量)在其它 g −1 个方程中对应系数所组成的矩阵。于是,判断第 i 个结构方程识别 状态的结构式条件为: 如果 R(00 ) g − 1 ,则第 i 个结构方程不可识别; 如果 R(00 ) = g − 1 ,则第 i 个结构方程可以识别,并且 如果 k − ki = gi − 1 ,则第 i 个结构方程恰好识别, 如果 k − ki gi − 1 ,则第 i 个结构方程过度识别。 其中符号 R 表示矩阵的秩。一般将该条件的前一部分称为秩条件,用以判断结构方程 是否识别;后一部分称为阶条件,用以判断结构方程恰好识别或者过度识别。 6-9.单方程估计方法有:狭义的工具变量法(IV),间接最小二乘法(ILS),两阶段最小二