t(t-1°)e(t-10) E(2)6-20:)()区-(=0)>()区[-"()=08(1)→竺(t-l)c(f-J) -(t-1)e(t-1)YT[ε()][8()]+[(+1)()](t+l)(t+l)←)(++1)e(++ I)0
0 0 0 ( ) ( ) ( ) St f t t t t F S e − − − 成立条件: ( ) ( ) 0 0 0 0 1 >0 - ,0 0 <0 0 - 0 t t f t t t f t == ) (右移),则在区间 内应有 2) (左移),则在区间 , 内应有 ( ) 21 t t s 例 → ( ) ( ) ( ) ( ) ( ) ( ) 2 1 1 1 1 1 t t t t t t t s s + + + = + = + ℒℒ ℒ ( ) ( ) 21 -1 1 s t t e s − − → t 0 t t ( ) 1 t 0 (t t − − 1 ( 1) ) - 1 t 0 (t t + + 1 ( 1) )
例5 : 求 [sin元t ε(t -1) ]元令f(t)=sin元t8(t)-S2+元2一元-S解 : sin元t ε(t-1)= -sin元(t - 1) s(t-1)O2Y+元S例6已知f(t)←)求f(3t -2)的LTS? +1S解:L[f(3t-2) ] =C+9
2 ( ) (3 2) 1 S f t f t LT S − + 例6 已知 求 的 解: ℒ[f (3t–2) ]= 2 3 2 9 S S e S − + 例5: 求 ℒ[sint (t –1) ] 2 2 f t t t ( ) sin ( ) S = + 令 解:sint (t –1) = –sin(t – 1) (t –1) 2 2 S e S − − +
单边周期信号的拉氏变换f(t)=f(t)+f(t-T)+f(t-2T)+LMfo(t-nT)e(t)n=0若fo(t) Fo(S) Re [s]>- 0 ()E(2)[2]>0 (+-58)U=0-6-21 ()=2(f-)ke[2] >080
单边周期信号的拉氏变换: ( ) 0 0 0 0 0 ( ) ( ) ( ) ( 2 ) ( ) T n f t f t f t T f t T f t nT t = = + − + − + = − L 若 f 0 (t) F0 ( S)Re [s] >- ( ) n 0 1 ( ) t n Re s >0 1 sT f t e − − = 如 = - T ( ) 0 ( ) ( ) 1 1 Re 0 - 4 28 T sT f t F s e s − 则 -
4.复频移(S域平移)特性若 f(t) 台F(S) ,Re[s]>oi2°10K[2]>Q'+Q0(0)620r E(2-2)(-3J)血例7: 求[e-αtssinβt (t) I , [e-αtcosβte(t) ](2+α)+BssK6[2]>Q' +Q°= - αe-αt sinβt e(t)1b中=0(2+α)+Be-αtcosβt (t)K[α]>Q'+Q°=- α12+α中=0
4. 复频移(S域平移)特性 若 f (t) F( S), Re [s] >1 0 1 0 0 0 0 0 Re S > + (4 31) ( ) ( ), s t f t e F S S S j − + − = 则 其中 为复常数 例7: 求 ℒ[e – t sint (t) ] , ℒ[e – t cost (t) ] e – t sint (t) e – t cost (t) 2 2 1 0 , Re S > ( = ) + S + + − 1 其中 0 = 2 2 1 0 , Re S ) > ( + = S S + + − + 1 其中 0 =
1例8求e-2t f()的LT已知 f(t)<>S?-S+139(S +2)? - 3(S + 2)+1例4 : 求 [e-ε(t-2) ] (用复频移特性求)f(t) = (t-2) 1(S+12e-t(t -2)<>?S+1
2 2 1 ( ) ( ) 1 3 t t f t e f LT S S − − + 例8 已知 求 的 2 ( ) 3 t t e f − 2 3 9( 2) 3( 2) 1 S S + − + + 例4: 求 ℒ[e –t (t –2) ] (用复频移特性求) 1 2 ( ) ( 2) S f t t e S − = − 1 2( 1) ( 2) 1 t S e t e S − − + − +