CNN-PDE非线性图像滤波器

偏微分(PDE)非线性图像滤波方法具有优良特性,但由于其计算量大而无法满足实时控制需求.细胞神经网(CNN)可以描述图像PDE模型,利用模拟CNN芯片并行求解,有助于提高其实时性.本文用CNN实现了PDE偏差非线性图像滤波器,提出了一种局部运算的噪声估计方法以选择适当的平滑系数.计算结果表明,这种噪声估计方法可以对不同噪声水平作出较精确的估计.仿真实验结果表明,CNN-PDE非线性滤波器取得了满意的滤波效果,用CNN实现PDE非线性滤波器的方法是有效可行的.
文件格式:PDF,文件大小:584.14KB,售价:1.44元
文档详细内容(约4页)
点击进入文档下载页(PDF格式)
已到末页,全文结束
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录