Isolated Singulari 讨论 8∫(x)在C1内不解析 一般说来,在C1上有奇点 至于b点,可能是(2)的奇点,也可能是 f(2)的解析点 果点是(1内的 b的邻域内的 Laurent
Expansion in Laurent Series Isolated Singularities of Uniform Function Analytic Continuation Theorem (Laurent) Illustrative Examples Laurent Expansion: Multivalued Functions ?Ø ❸ f(z)3C1SØ)Û `5§3C1þkÛ: ub:§U´f(z)Û:§U´ f(z))Û: XJb:´C1SÛ:§KC1±Ã §ÂñÒC¤0 < |z − b| < R© ùÒ f(z)3áÛ:bSLaurentÐm C. S. Wu 1lù )Û¼êLaurentÐm
Isolated Singulari 讨论 8∫(x)在C1内不解析 一般说来,在C1上有奇点 至于b点,可能是f(z)的奇点,也可能是 f(2)的解析点 如果b点是C1内的唯一奇点,则C1可以无限缩 ,收敛范国就变成0<2-6 这时就 得到∫(2)在孤立奇点b的邻域内的 Laurent展
Expansion in Laurent Series Isolated Singularities of Uniform Function Analytic Continuation Theorem (Laurent) Illustrative Examples Laurent Expansion: Multivalued Functions ?Ø ❸ f(z)3C1SØ)Û `5§3C1þkÛ: ub:§U´f(z)Û:§U´ f(z))Û: XJb:´C1SÛ:§KC1±Ã §ÂñÒC¤0 < |z − b| < R© ùÒ f(z)3áÛ:bSLaurentÐm C. S. Wu 1lù )Û¼êLaurentÐm
Isolated Singulari 讨论 8∫(x)在C1内不解析 一般说来,在C1上有奇点 至于b点,可能是f(z)的奇点,也可能是 f(x)的解析点 如果b点是C1内的唯一奇点,则C1可以无限缩 小,收敛范围就变成0<|z-b<R.这时就 得到f(x)在孤立奇点b的邻域内的 Laurent,展开 尜
Expansion in Laurent Series Isolated Singularities of Uniform Function Analytic Continuation Theorem (Laurent) Illustrative Examples Laurent Expansion: Multivalued Functions ?Ø ❸ f(z)3C1SØ)Û `5§3C1þkÛ: ub:§U´f(z)Û:§U´ f(z))Û: XJb:´C1SÛ:§KC1±Ã §ÂñÒC¤0 < |z − b| < R© ùÒ f(z)3áÛ:bSLaurentÐm C. S. Wu 1lù )Û¼êLaurentÐm
Isolated Singulari 讨论 ef(z)在C2外不解析
Expansion in Laurent Series Isolated Singularities of Uniform Function Analytic Continuation Theorem (Laurent) Illustrative Examples Laurent Expansion: Multivalued Functions ?Ø ❹ f(z)3C2 Ø)Û `5§3C2þkÛ: C2»±∞§$3∞: ñ C. S. Wu 1lù )Û¼êLaurentÐm
Isolated Singulari 讨论 ef(z)在C2外不解析 一般说来,在C2上有奇点 外圆C2的半径也可以为∞,甚至在点也收
Expansion in Laurent Series Isolated Singularities of Uniform Function Analytic Continuation Theorem (Laurent) Illustrative Examples Laurent Expansion: Multivalued Functions ?Ø ❹ f(z)3C2 Ø)Û `5§3C2þkÛ: C2»±∞§$3∞: ñ C. S. Wu 1lù )Û¼êLaurentÐm