Convex Function Examples on R: Exponential:ea,where a ER. -Powers::za,where a≥1ora≤0. Powers of absolute value:P,where p >1. Negative logarithm:-logx. Negative entropy:xlogz. Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 16
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 16 Convex Function
Convex Function Examples on Rd: -norm:f(x)=x‖. maximum:f(x)=max {x1,...,n}. Log-sum-exp:f(x)=log (e21+...+e2m). Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 17
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 17 Convex Function
Jensen's Inequality Theorem 3 (Jensen's Inequality).If X is a random variable such that X dom f with probability one,and f is convex,then we have f(E[X])≤E[f(X)]. Intuition: (,f() (,f() Convexity:f(01x1+…+0xk)≤01f(x1)+·+0f(xk) EX E[f(X)] Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 18
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 18 Jensen’s Inequality Intuition:
Part 2.Convex Optimization Problem ·Problem ·Subgradients Why Convexity? Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 19
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 19 Part 2. Convex Optimization Problem • Problem • Subgradients • Why Convexity?
Convex Optimization Problem We adopt a minimization language min f(x) s.t.g(x)≤0,i=1,·,m ax=b,i=1,…,n optimization variable x Rd -convex objective function:f:RdR convex inequality constraints:g1,...,gm Advanced Optimization(Fall 2023) Lecture 2.Convex Optimization Basics 20
Advanced Optimization (Fall 2023) Lecture 2. Convex Optimization Basics 20 Convex Optimization Problem • We adopt a minimization language