文本生成领域的深度强化学习研究进展

谷歌的人工智能系统(AlphaGo)在围棋领域取得了一系列成功,使得深度强化学习得到越来越多的关注。深度强化学习融合了深度学习对复杂环境的感知能力和强化学习对复杂情景的决策能力。而自然语言处理过程中有着数量巨大的词汇或者语句需要表征,并且在对话系统、机器翻译和图像描述等文本生成任务中存在大量难以建模的决策问题。这使得深度强化学习在自然语言处理的文本生成任务中能够发挥重要的作用,帮助改进现有的模型结构或者训练机制,并且已经取得了很多显著的成果。为此,本文系统阐述深度强化学习应用在不同的文本生成任务中的一些主要方法,梳理其发展的轨迹,分析算法特点。最后,展望深度强化学习与自然语言处理任务融合的前景和挑战。
文件格式:PDF,文件大小:859.37KB,售价:4.99元
文档详细内容(约14页)
点击进入文档下载页(PDF格式)
共14页,试读已结束,阅读完整版请下载

您可能感兴趣的文档

点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录