对一元函数而言,只要在x的左、右极限存在且相等,函数在xn 处的极限就存在。而对多元函数来说,根据极限存在的定义,则要求 x以任何方式趋于x时,函数值都趋于同一个极限。若自变量沿不 同的两条曲线趋于某一定点时,函数的极限不同或不存在,那么这个 函数在该点的极限一定不存在
对一元函数而言,只要在 0 x 的左、右极限存在且相等,函数在 0 x 处的极限就存在。而对多元函数来说,根据极限存在的定义,则要求 当 x以任何方式趋于 0 x 时,函数值都趋于同一个极限。若自变量沿不 同的两条曲线趋于某一定点时,函数的极限不同或不存在,那么这个 函数在该点的极限一定不存在
对一元函数而言,只要在x的左、右极限存在且相等,函数在x0 处的极限就存在。而对多元函数来说,根据极限存在的定义,则要求 x以任何方式趋于x时,函数值都趋于同一个极限。若自变量沿不 同的两条曲线趋于某一定点时,函数的极限不同或不存在,那么这个 函数在该点的极限一定不存在。 例11.2.3设f(x,y)= x+2,(x,y)≠(0,0)。 当点x=(x,y)沿x轴和y轴趋于(00)时,f(x,y)的极限都是0。但 当点x=(x,y)沿直线y=m趋于(00)时, lim f(x, y)=lim- mr? x→0 x→0x2+m2x21+m 对于不同的m有不同的极限值。这说明f(x,y)在点00)的极限不存在
例 11.2.3 设 )0,0(),(,),( 22 ≠ + = yx yx xy yxf 。 当点 x = yx ),( 沿 x 轴和 y 轴趋于 )0,0( 时, yxf ),( 的极限都是 0。但 当点 x = yx ),( 沿直线 y = mx 趋于 )0,0( 时, 222 2 2 0 0 1 lim),(lim mm xmx mx yxf x mxy x + = + = → = → , 对于不同的m有不同的极限值。这说明 yxf ),( 在点 )0,0( 的极限不存在。 对一元函数而言,只要在 0 x 的左、右极限存在且相等,函数在 0 x 处的极限就存在。而对多元函数来说,根据极限存在的定义,则要求 当 x以任何方式趋于 0 x 时,函数值都趋于同一个极限。若自变量沿不 同的两条曲线趋于某一定点时,函数的极限不同或不存在,那么这个 函数在该点的极限一定不存在
下例说明即使点x沿任意直线趋于x时,f(x,y)的极限都存在且 相等,仍无法保证函数f在x处有极限。 例11.2.4设f(x,y) 2,(x,y)≠(0.0) y:+x 点x=(x,y)沿直线y=mx趋于(00)时,成立 (m'x-x lim f(r, v)=lim-44+x y=mx 当点x=(x,y)沿y轴趋于(0,0)时,也成立lmnf(x,y)=1,因此当点x=(x, 沿任何直线趋于(00)时,f(x,y)极限存在且相等。 但f(x,y)在点(00)的极限不存在。事实上,∫在抛物线y2=x上的 值为0,因此当点x=(x,y)沿这条抛物线趋于(0,0)时,它的极限为0
下例说明即使点 x 沿任意直线趋于 x0 时, yxf ),( 的极限都存在且 相等,仍无法保证函数 f 在 x0处有极限。 例 11.2.4 设 )0,0(),(, )( ),( 24 22 ≠ +− = yx xy xy yxf 。 当点 x = yx ),( 沿直线 y = mx 趋于 )0,0( 时, 成立 1 )( lim),(lim 244 222 0 0 = +− = → = → xxm xxm yxf x mxy x ; 当点 x = yx ),( 沿 y 轴趋于 )0,0( 时,也成立 1),(lim 0 0 = = → yxf x y ,因此当点 x = yx ),( 沿任何直线趋于 )0,0( 时, yxf ),( 极限存在且相等。 但 yxf ),( 在点 )0,0( 的极限不存在。事实上, f 在抛物线 = xy 2 上的 值为 0,因此当点 x = yx ),( 沿这条抛物线趋于 )0,0( 时,它的极限为 0
元函数的极限性质,如唯一性、局部有界性、局部保序性 局部夹逼性及极限的四则运算法则,对二元函数依然成立,这里不 再细述,请读者自行加以证明
一元函数的极限性质,如唯一性、局部有界性、局部保序性、 局部夹逼性及极限的四则运算法则,对二元函数依然成立,这里不 再细述,请读者自行加以证明
元函数的极限性质,如唯一性、局部有界性、局部保序性 局部夹逼性及极限的四则运算法则,对二元函数依然成立,这里不 再细述,请读者自行加以证明。 累次极限 对重极限imf(x,y)(即imf(x,y),人们很自然会想到的是, (x,y)-(x0,y0) x→>x0 y→yo 能否在一定条件下将重极限(x,y)→(x0,y)分解成为两个独立的极限 x→x和y→y,再利用一元函数的极限理论和方法逐个处理之? 这后一种极限称为累次极限
累次极限 对重极限 ),(lim ),(),( 00 yxf → yxyx (即 ),(lim 0 0 yxf yy xx → → ),人们很自然会想到的是, 能否在一定条件下将重极限 yx ),( ),( 00 → yx 分解成为两个独立的极限 0 → xx 和 0 → yy ,再利用一元函数的极限理论和方法逐个处理之? 这后一种极限称为累次极限。 一元函数的极限性质,如唯一性、局部有界性、局部保序性、 局部夹逼性及极限的四则运算法则,对二元函数依然成立,这里不 再细述,请读者自行加以证明