例71求e在=0点的 Taylor展开式 因为e在全平面解析,故可展开为
Expansion in Taylor Series Taylor Expansion: Examples Identity Theorem for Analytic Functions Theorem (Taylor) Discussions & Remarks Illustrative Examples ~7.1 ¦e z3z = 0:TaylorÐmª Ïe z3²¡)Û§Ðm e z = X ∞ n=0 anz n |z| < ∞ qÏ e z (n) = ez §¤± an = 1 n! e z (n) z=0 = 1 n! ∴ e z = X ∞ n=0 1 n! z n |z| < ∞ C. S. Wu 1Ôù )Û¼êTaylorÐm
例71求e在=0点的 Taylor展开式 因为e在全平面解析,故可展开为 ∑ 因(e
Expansion in Taylor Series Taylor Expansion: Examples Identity Theorem for Analytic Functions Theorem (Taylor) Discussions & Remarks Illustrative Examples ~7.1 ¦e z3z = 0:TaylorÐmª Ïe z3²¡)Û§Ðm e z = X ∞ n=0 anz n |z| < ∞ qÏ e z (n) = ez §¤± an = 1 n! e z (n) z=0 = 1 n! ∴ e z = X ∞ n=0 1 n! z n |z| < ∞ C. S. Wu 1Ôù )Û¼êTaylorÐm
例71求e在=0点的 Taylor展开式 因为e在全平面解析,故可展开为 ∑ 又因(e)(n)=e,所以 1 1
Expansion in Taylor Series Taylor Expansion: Examples Identity Theorem for Analytic Functions Theorem (Taylor) Discussions & Remarks Illustrative Examples ~7.1 ¦e z3z = 0:TaylorÐmª Ïe z3²¡)Û§Ðm e z = X ∞ n=0 anz n |z| < ∞ qÏ e z (n) = ez §¤± an = 1 n! e z (n) z=0 = 1 n! ∴ e z = X ∞ n=0 1 n! z n |z| < ∞ C. S. Wu 1Ôù )Û¼êTaylorÐm
例71求e在=0点的 Taylor展开式 因为e在全平面解析,故可展开为 ∑ 又因(e)(n)=e,所以 < n=0
Expansion in Taylor Series Taylor Expansion: Examples Identity Theorem for Analytic Functions Theorem (Taylor) Discussions & Remarks Illustrative Examples ~7.1 ¦e z3z = 0:TaylorÐmª Ïe z3²¡)Û§Ðm e z = X ∞ n=0 anz n |z| < ∞ qÏ e z (n) = ez §¤± an = 1 n! e z (n) z=0 = 1 n! ∴ e z = X ∞ n=0 1 n! z n |z| < ∞ C. S. Wu 1Ôù )Û¼êTaylorÐm
讲授要点 O Taylor,展开 展开定理 讨论 基本函数展开式 Tavion展开举例 级数乘法与待定系数法 多值函数的 avlon展开 。在无穷远点的 Taylor展开 ③解析函数的唯一性 解析函数零点的孤立性 。解析函数的唯一性
Expansion in Taylor Series Taylor Expansion: Examples Identity Theorem for Analytic Functions Theorem (Taylor) Discussions & Remarks Illustrative Examples ùÇ: 1 TaylorÐm Ðm½n ?Ø Ä¼êÐmª 2 TaylorÐmÞ~ ?ê¦{½Xê{ õ¼êTaylorÐm 3á:TaylorÐm 3 )Û¼ê5 )Û¼ê":á5 )Û¼ê5 C. S. Wu 1Ôù )Û¼êTaylorÐm