第七章线粒体疾病的遗传 几乎每个人体细胞中都含有数以百计的线粒体,每个线粒体内膜 上富含5种具有传递电子功能的酶复合体,组成呼吸链-氧化磷酸化系 统,将代谢过程中产生的电子通过连锁反应逐步传递给氧并将质子从 线粒体基质转移到膜间腔,形成跨内膜的质子梯度,复合物Ⅴ(ATP 合酶)利用质子顺浓度回流到基质中所产生的势能,使ADP磷酸化 生成ATP,为细胞提供进行各种生命活动所需要的能量。 线粒体内还含有DNA分子,被称为人类第25号染色体,是细胞 核以外含有遗传信息和表达系统的细胞器,其遗传特点表现为非孟德 尔遗传方式,又称核外遗传。1981年 Anderson等人完成了人类线粒 体基因组的全部核苷酸序列的测定,1988年, Wallace等发现 Leber 视神经病的发生与线粒体DNA( mitochondrial dna, mtDNA)突变 有关。近年来,人们发现线粒体不仅在细胞的生长代谢中起重要作用, 而且mDNA突变是许多人类疾病的重要病因 第一节人类线粒体基因组 mtDNA编码线粒体中部分蛋白质和全部的tRNA、rRNA,能够 独立进行复制、转录和翻译,但所含信息量小,呼吸链-氧化磷酸化系 统的80多种蛋白质亚基中, mtdNA仅编码13种,绝大部分蛋白质 亚基和其他维持线粒体结构和功能的蛋白质都依赖于核DNA( nuclear DNA,nDNA)编码,在细胞质中合成后,经特定转运方式进入线粒 体。此外, mtDNA基因的表达受nDNA的制约,线粒体氧化磷酸酶 化系统的组装和维护需要nDNA和 mtdNA的协调,二者共同作用参 与机体代谢调节,因此线粒体是一种半自主细胞器,受线粒体基因组 和核基因组两套遗传系统共同控制(图7-1),nDNA与mDNA基因 突变均可导致线粒体中蛋白质合成受阻,细胞能量代谢缺陷
1 第七章 线粒体疾病的遗传 几乎每个人体细胞中都含有数以百计的线粒体,每个线粒体内膜 上富含 5 种具有传递电子功能的酶复合体,组成呼吸链-氧化磷酸化系 统,将代谢过程中产生的电子通过连锁反应逐步传递给氧并将质子从 线粒体基质转移到膜间腔,形成跨内膜的质子梯度,复合物Ⅴ(ATP 合酶)利用质子顺浓度回流到基质中所产生的势能,使 ADP 磷酸化 生成 ATP,为细胞提供进行各种生命活动所需要的能量。 线粒体内还含有 DNA 分子,被称为人类第 25 号染色体,是细胞 核以外含有遗传信息和表达系统的细胞器,其遗传特点表现为非孟德 尔遗传方式,又称核外遗传。1981 年 Anderson 等人完成了人类线粒 体基因组的全部核苷酸序列的测定,1988 年,Wallace 等发现 Leber 视神经病的发生与线粒体 DNA(mitochondrial DNA,mtDNA)突变 有关。近年来,人们发现线粒体不仅在细胞的生长代谢中起重要作用, 而且 mtDNA 突变是许多人类疾病的重要病因。 第一节 人类线粒体基因组 mtDNA 编码线粒体中部分蛋白质和全部的 tRNA、rRNA,能够 独立进行复制、转录和翻译,但所含信息量小,呼吸链-氧化磷酸化系 统的 80 多种蛋白质亚基中,mtDNA 仅编码 13 种,绝大部分蛋白质 亚基和其他维持线粒体结构和功能的蛋白质都依赖于核 DNA(nuclear DNA,nDNA)编码,在细胞质中合成后,经特定转运方式进入线粒 体。此外,mtDNA 基因的表达受 nDNA 的制约,线粒体氧化磷酸酶 化系统的组装和维护需要 nDNA 和 mtDNA 的协调,二者共同作用参 与机体代谢调节,因此线粒体是一种半自主细胞器,受线粒体基因组 和核基因组两套遗传系统共同控制(图 7-1),nDNA 与 mtDNA 基因 突变均可导致线粒体中蛋白质合成受阻,细胞能量代谢缺陷
图71mDNA与mDNA的协同作用 线粒体基因组 线粒体基因组是人类基因组的重要组成部分,全长16569bp,不 与组蛋白结合,呈裸露闭环双链状,根据其转录产物在CSCⅠ中密度 的不同分为重链和轻链,重链(H链)富含鸟嘌呤,轻链(L链)富 含胞嘧啶 mtDNA分为编码区与非编码区,编码区为保守序列,不同种系 间75%的核苷酸具同源性,此区包括37个基因:2个基因编码线粒体 核糖体的rRNA(16S、12S),22个基因编码线粒体中的tRNA,13 个基因编码与线粒体氧化磷酸化( OXPHOS)有关的蛋白质。13个基 因序列都以ATG(甲硫氨酸)为起始密码,并有终止密码结构,长度 均超过可编码50个氨基酸多肽所必需的长度,由这13个基因所编码 的蛋白质均已确定,其中3个为构成细胞色素c氧化酶(COX)复合 体(复合体Ⅳ)催化活性中心的亚单位(COXⅠ、COXⅡ和COXⅢI), 这三个亚基与细菌细胞色素c氧化酶是相似的,其序列在进化过程中 是高度保守的;还有2个为ATP合酶复合体(复合体Ⅴ)Fo部分的2 个亚基(A6和A8);7个为 NADH-CoQ还原酶复合体(复合体I) 的亚基(NDl、ND2、ND3、ND4L、ND4、ND5和ND6);还有1个 编码的结构蛋白质为CoQH2-细胞色素c还原酶复合体(复合体Ⅲ) 中细胞色素b的亚基;各基因之间排列极为紧凑,部分区域还出现重 叠,即前一个基因的最后一段碱基与下一个基因的第一段碱基相衔 接,利用率极高。无启动子和内含子,缺少终止密码子,仅以U或 UA结尾。基因间隔区只有87bp,占 mt dNA总长度的的05%。因而, mtNA任何区域的突变都可能导致线粒体氧化磷酸化功能的病理性 改变。 非编码区也叫控制区( control-region,CR)或D环区( disp lacement loop region,D-lop),由112bp组成(图72),与 mt DNA的复制及
2 图 7-1 mtDNA 与 nDNA 的协同作用 一、线粒体基因组 线粒体基因组是人类基因组的重要组成部分,全长 16569bp,不 与组蛋白结合,呈裸露闭环双链状,根据其转录产物在 CsCl 中密度 的不同分为重链和轻链,重链(H 链)富含鸟嘌呤,轻链(L 链)富 含胞嘧啶。 mtDNA 分为编码区与非编码区,编码区为保守序列,不同种系 间 75%的核苷酸具同源性,此区包括 37 个基因:2 个基因编码线粒体 核糖体的 rRNA(16S、12S),22 个基因编码线粒体中的 tRNA,13 个基因编码与线粒体氧化磷酸化(OXPHOS)有关的蛋白质。13 个基 因序列都以 ATG(甲硫氨酸)为起始密码,并有终止密码结构,长度 均超过可编码 50 个氨基酸多肽所必需的长度,由这 13 个基因所编码 的蛋白质均已确定,其中 3 个为构成细胞色素 c 氧化酶(COX)复合 体(复合体Ⅳ)催化活性中心的亚单位(COXⅠ、COXⅡ和 COXⅢ), 这三个亚基与细菌细胞色素 c 氧化酶是相似的,其序列在进化过程中 是高度保守的;还有 2 个为 ATP 合酶复合体(复合体Ⅴ)F0部分的 2 个亚基(A6 和 A8);7 个为 NADH-CoQ 还原酶复合体(复合体Ⅰ) 的亚基(ND1、ND2、ND3、ND4L、ND4、ND5 和 ND6);还有 1 个 编码的结构蛋白质为 CoQH2-细胞色素 c 还原酶复合体(复合体Ⅲ) 中细胞色素 b 的亚基;各基因之间排列极为紧凑,部分区域还出现重 叠,即前一个基因的最后一段碱基与下一个基因的第一段碱基相衔 接,利用率极高。无启动子和内含子,缺少终止密码子,仅以 U 或 UA 结尾。基因间隔区只有 87bp,占 mtDNA 总长度的的 0.5%。因而, mtDNA 任何区域的突变都可能导致线粒体氧化磷酸化功能的病理性 改变。 非编码区也叫控制区(control-region,CR)或 D 环区(displacement loop region,D-loop),由 1122bp 组成(图 7-2),与 mtDNA 的复制及
转录有关,包含H链复制的起始点(OH)、H链和L链转录的启动子 (Pm、PH2、PL)以及4个保守序列(分别在213~235、299~315、 346~363bp和终止区16147~16172bp)。 图72线粒体基因组 mtDNA突变率极高,多态现象比较普遍,两个无关个体的 mtDNA 中碱基变化率可达3%,尤其D环区是线粒体基因组中进化速度最快 的DNA序列,极少有同源性,而且参与的碱基数目不等,其16024nt 16365nt(nt:核苷酸)及73nt~340nt两个区域为多态性高发区,分 别称为高变区Ⅰ( hypervariable region I,HⅤI)及高变区Ⅱ ( hypervariable region I,HVI),这两个区域的高度多态性导致了个 体间的高度差异,适用于群体遗传学研究,如生物进化、种族迁移 亲缘关系鉴定等。 线粒体基因的转录 与核基因转录比较,mDNA的转录有以下特点:①两条链均有 编码功能:重链编码2个rRNA、12个mRNA和14个tRNA:轻链 编码1个mRNA和8个tRNA;②两条链从D环区的启动子处同时开 始以相同速率转录,L链按顺时针方向转录,H链按逆时针方向转录 ③ mtDNA的基因之间无终止子,因此两条链各自产生一个巨大的多 顺反子初级转录产物。H链还产生一个较短的、合成活跃的RNA转 录产物,其中包含2个tRNA和2个mRNA;④RNA基因通常位于 mRNA基因和rRNA基因之间,每个tRNA基因的5′端与mRNA基 因的3′端紧密相连,核酸酶准确识别初级转录产物中tRNA序列, 并在tRNA两端剪切转录本,形成单基因的mRNA、tRNA和rRNA 剪切下来的mRNA无5′帽结构,在poA聚合酶的作用下,在3′ 端合成一段polA,成为成熟的mRNA。初级转录产物中无信息的片 段被很快降解;⑤ mtDNA的遗传密码与nDNA不完全相同:UGA编
3 转录有关,包含 H 链复制的起始点(OH)、H 链和 L 链转录的启动子 (PH1、PH2、PL)以及 4 个保守序列(分别在 213~235、299~315、 346~363bp 和终止区 16147~16172bp)。 图 7-2 线粒体基因组 mtDNA 突变率极高,多态现象比较普遍,两个无关个体的mtDNA 中碱基变化率可达 3%,尤其 D 环区是线粒体基因组中进化速度最快 的 DNA 序列,极少有同源性,而且参与的碱基数目不等,其 16024nt~ 16365nt(nt:核苷酸)及 73nt~340nt 两个区域为多态性高发区,分 别称为高变区Ⅰ(hypervariable regionⅠ,HVⅠ)及高变区Ⅱ (hypervariable regionⅡ,HVⅡ),这两个区域的高度多态性导致了个 体间的高度差异,适用于群体遗传学研究,如生物进化、种族迁移、 亲缘关系鉴定等。 二、线粒体基因的转录 与核基因转录比较,mtDNA 的转录有以下特点:①两条链均有 编码功能:重链编码 2 个 rRNA、12 个 mRNA 和 14 个 tRNA;轻链 编码 1 个 mRNA 和 8 个 tRNA;②两条链从 D-环区的启动子处同时开 始以相同速率转录,L 链按顺时针方向转录,H 链按逆时针方向转录; ③mtDNA 的基因之间无终止子,因此两条链各自产生一个巨大的多 顺反子初级转录产物。H 链还产生一个较短的、合成活跃的 RNA 转 录产物,其中包含 2 个 tRNA 和 2 个 mRNA;④tRNA 基因通常位于 mRNA 基因和 rRNA 基因之间,每个 tRNA 基因的 5′端与 mRNA 基 因的 3′端紧密相连,核酸酶准确识别初级转录产物中 tRNA 序列, 并在 tRNA 两端剪切转录本,形成单基因的 mRNA、tRNA 和 rRNA, 剪切下来的 mRNA 无 5′帽结构,在 polyA 聚合酶的作用下,在 3′ 端合成一段 polyA,成为成熟的 mRNA。初级转录产物中无信息的片 段被很快降解;⑤mtDNA 的遗传密码与 nDNA 不完全相同:UGA 编
码色氨酸而非终止信号,AGA、AGG是终止信号而非精氨酸,AUA 编码甲硫氨酸兼启动信号,而不是异亮氨酸的密码子;⑥线粒体中的 tRNA兼用性较强,其反密码子严格识别密码子的前两位碱基,但第3 位碱基的识别有一定的自由度(称碱基摆动),可以识别4种碱基中 的任何一种,因此,1个tRNA往往可识别几个简并密码子,22个tRNA 便可识别线粒体mRNA的全部密码子(表7-1)。与nDNA比较,线 粒体密码子的第3位更常见的是A或C,这是线粒体密码子简并性的 主要来源 表7-1丙氨酸(Aa)的tRNA反密码子摆动 反密码子 密码子 核tRNA 线粒体tRNA GCU、GCC GGC GCA、GCG UGC 三、线粒体DNA的复制 mtDNA可进行半保留复制,其H链复制的起始点(On)与L链 复制起始点(O1)相隔2/3个 mtDNA。复制起始于L链的转录启动 子,首先以L链为模板合成一段RNA作为H链复制的引物,在DNA 聚合酶作用下,复制一条互补的H链,取代亲代H链与L链互补 被置换的亲代H链保持单链状态,这段发生置换的区域称为置换环或 D环,故此种DNA复制方式称D环复制。随着新H链的合成,D环 延伸,轻链复制起始点O暴露,L链开始以被置换的亲代H链为模 板沿逆时针方向复制。当H链合成结束时,L链只合成了1/3,此时 mtdNA有两个环:一个是已完成复制的环状双链DNA,另一个是正 在复制、有部分单链的DNA环。两条链的复制全部完成后,起始点 的RNA引物被切除,缺口封闭,两条子代DNA分子分离(图7-3) 新合成的线粒体DNA是松弛型的,约需40分钟成为超螺旋状态
4 码色氨酸而非终止信号,AGA、AGG 是终止信号而非精氨酸,AUA 编码甲硫氨酸兼启动信号,而不是异亮氨酸的密码子;⑥线粒体中的 tRNA 兼用性较强,其反密码子严格识别密码子的前两位碱基,但第 3 位碱基的识别有一定的自由度(称碱基摆动),可以识别 4 种碱基中 的任何一种,因此,1 个 tRNA 往往可识别几个简并密码子,22 个tRNA 便可识别线粒体 mRNA 的全部密码子(表 7-1)。与 nDNA 比较,线 粒体密码子的第 3 位更常见的是 A 或 C,这是线粒体密码子简并性的 主要来源。 表 7-1 丙氨酸(Ala)的 tRNA 反密码子摆动 密码子 反密码子 核 tRNA 线粒体 tRNA GCU、GCC GCA、GCG GGC UGC UGC 三、线粒体 DNA 的复制 mtDNA 可进行半保留复制,其 H 链复制的起始点(OH)与 L 链 复制起始点(OL)相隔 2/3 个 mtDNA。复制起始于 L 链的转录启动 子,首先以 L 链为模板合成一段 RNA 作为 H 链复制的引物,在 DNA 聚合酶作用下,复制一条互补的 H 链,取代亲代 H 链与 L 链互补。 被置换的亲代 H 链保持单链状态,这段发生置换的区域称为置换环或 D 环,故此种 DNA 复制方式称 D-环复制。随着新 H 链的合成,D 环 延伸,轻链复制起始点 OL暴露,L 链开始以被置换的亲代 H 链为模 板沿逆时针方向复制。当 H 链合成结束时,L 链只合成了 1/3,此时 mtDNA 有两个环:一个是已完成复制的环状双链 DNA,另一个是正 在复制、有部分单链的 DNA 环。两条链的复制全部完成后,起始点 的 RNA 引物被切除,缺口封闭,两条子代 DNA 分子分离(图 7-3)。 新合成的线粒体 DNA 是松弛型的,约需 40 分钟成为超螺旋状态
图73D环复制 多细胞生物中, mtDNA复制并不均一,有些 mtDNA分子合成活 跃,有些 mtDNA分子不合成。复制所需的各种酶由nNA编码 mtNA的复制形式除D环复制外,还有θ复制、滚环复制等, 相同的细胞在不同环境中可以其中任何一种方式复制,也可以几种复 制方式并存,其调节机制不明。 第二节线粒体基因的突变 自从1988年发现第一个 mtDNA突变以来,已发现100多个与疾 病相关的点突变、200多种缺失和重排,大约60%的点突变影响tRNA, 35%影响多肽链的亚单位,5%影响rRNA。mDNA基因突变可影响 OXPHOS功能,使ATP合成减少,一旦线粒体不能提供足够的能量 则可引起细胞发生退变甚至坏死,导致一些组织和器官功能的减退, 出现相应的临床症状。 确定一个 mt dNA是否为致病性突变,有以下几个标准:①突变 发生于高度保守的序列或发生突变的位点有明显的功能重要性;②该 突变可引起呼吸链缺损;③正常人群中未发现该 mt dNA突变类型, 在来自不同家系但有类似表型的患者中发现相同的突变;④有异质性 存在,而且异质性程度与疾病严重程度正相关。 mtDNA突变类型主要包括点突变、大片段重组和 mtdNA数量减 少 点突变 点突变发生的位置不同,所产生的效应也不同。已知的由mDNA 突变所引起的疾病中,23的点突变发生在与线粒体内蛋白质翻译有 关的tRNA或rRNA基因上,使tRNA和rRNA的结构异常,普遍影
5 图 7-3 D-环复制 多细胞生物中,mtDNA 复制并不均一,有些 mtDNA 分子合成活 跃,有些 mtDNA 分子不合成。复制所需的各种酶由 nDNA 编码。 mtDNA 的复制形式除 D 环复制外,还有θ复制、滚环复制等, 相同的细胞在不同环境中可以其中任何一种方式复制,也可以几种复 制方式并存,其调节机制不明。 第二节 线粒体基因的突变 自从 1988 年发现第一个 mtDNA 突变以来,已发现 100 多个与疾 病相关的点突变、200 多种缺失和重排,大约 60%的点突变影响tRNA, 35%影响多肽链的亚单位,5%影响 rRNA。mtDNA 基因突变可影响 OXPHOS 功能,使 ATP 合成减少,一旦线粒体不能提供足够的能量 则可引起细胞发生退变甚至坏死,导致一些组织和器官功能的减退, 出现相应的临床症状。 确定一个 mtDNA 是否为致病性突变,有以下几个标准:①突变 发生于高度保守的序列或发生突变的位点有明显的功能重要性;②该 突变可引起呼吸链缺损;③正常人群中未发现该 mtDNA 突变类型, 在来自不同家系但有类似表型的患者中发现相同的突变;④有异质性 存在,而且异质性程度与疾病严重程度正相关。 mtDNA 突变类型主要包括点突变、大片段重组和 mtDNA 数量减 少。 一、点突变 点突变发生的位置不同,所产生的效应也不同。已知的由 mtDNA 突变所引起的疾病中,2/3 的点突变发生在与线粒体内蛋白质翻译有 关的 tRNA 或 rRNA 基因上,使 tRNA 和 rRNA 的结构异常,普遍影