《信息安全学报》:深度学习模型可解释性的研究进展(化盈盈、张岱墀、葛仕明)

本文旨在对深度学习模型可解释性的研究进展进行系统性的调研,从可解释性原理的角度对现有方法进行分类,并且结合可解释性方法在人工智能领域的实际应用,分析目前可解释性研究存在的问题,以及深度学习模型可解释性的发展趋势。为全面掌握模型可解释性的研究进展以及未来的研究方向提供新的思路。
文件格式:PDF,文件大小:2.92MB,售价:3.58元
文档详细内容(约12页)
点击进入文档下载页(PDF格式)
共12页,试读已结束,阅读完整版请下载

您可能感兴趣的文档

点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱: