相交于E2点,从而确定了新的均衡价格0P2,均衡数量0Q2。显然,OP2低于0Q。 由此可见,津贴补助政策可以刺激企业增加某种产品的生产。 图2-25津贴政策的经济效应 第五节蛛网定理一动态分析 一、蛛网定理与动态分析方法 在静态和比较静态经济模型中,所有经济变量所属的时间被抽象掉了。换 句话说,全部的外生变量和内生变量不存在时间先后上的差别,它们都是在同 一时期内发生的。与此相反,动态分析模型的一个主要特征就是,对各种经济 变量在时间上的先后差别予以区分,进而研究不同时点上的经济变量的相互作 用与影响。前面有关均衡价格的决定和变动的分析,体现了静态和比较静态模 型的特征,而本节的蛛网定理,则属于一个采用动态分析方法的著名经济模型。 作为一个动态经济模型,蛛网模型可以用下面三个联系的方程式表示: 其中,a,b,c和d均为大于零的常数。 在方程组中,用来表示时间的字母t使得各经济变量有了时间上的先后差 别。三个联系方程式的含义依次是:第一,本期产品的市场需求量取决于该产 品的本期市场价格;第二,本期产品的市场供给量取决于上一时期该产品的市 场价格:第三,当产品本期的市场供求量相等时,市场处于出清状态。 可以看出,蛛网模型与与前面介绍的静态模型的最主要区别是,本期产品 供给量不是由该产品本期市场价格中定,而是决定于前一时期该产品的市场价 格。这一假设对于那些产品生产周期较长的产品(如农产品)来说,还是有一 定程度的适用性的。 二、蛛网模型的三种情况 蛛网模型依据产品供求斜率的绝对值的相互关系,研究价格背离均衡状态 以后,能否回到原来的均衡点。下面以小麦生产为例,分三种情况介绍蛛网模 型的结论。 当产品的供给曲线斜率的绝对值大于需求曲线斜率绝对值时,价格与产量背率 均衡状态以后,会围绕均衡水平上下波动,并且波动幅度越来越小,最终恢复 均衡。见图2-26。 图2-26收敛型蛛网 在图2-26中,产品供给曲线S的斜率的绝对值大于需求曲线D斜率的绝对 值大于需求曲线D斜率的绝对值,E点是均衡点。假定在第一年,由于某种自 然灾害的作用,小麦的产量由均衡水平0Q*减少到0Q,则第一年小麦的供给量 小于需求量,小麦价格将上升到OP,市场出清。 第二年,生产者根据第一年的OP,价格生产了0Q2单位的小麦,导致小麦供
过于求,价格下降到0P2。 第三年,生产者根据第二年价格0P2生产OQ单位的小麦,导致小麦供不应 求,价格上升到OP。 如此循环反复,价格与产量的波动幅度越来越小,最终趋向于均衡点。 在这一模型中,价格与产量的波动轨迹如同蛛网,因此称之为蛛网模型。 在这里,由于价格与产量背离均衡状态后,又能回复到原来的均衡点,换句话 说,这一均衡价格体系是属于稳定均衡的,因此我们称,产品供给曲线斜率的 绝对值大于需求曲线斜率的绝对值,为蛛网稳定条件,相应的蛛网称为收敛型 蛛网。” 第二,当产品的供给曲线斜率的绝对值小于需求曲线斜率的绝对值时,价 格与产量背离均衡状态以后,会围绕均衡价格与产品背离均衡状态以后,会围 绕均衡价格水平上下波动。但波动幅度越来越小,离均衡点越来越远,见图2 27。 图2-27发散型蛛网 在图2-27中,产品供给线S的斜率的约对值小于需求曲线的斜率的绝对值。均 衡点为正。 假定,在第一年,由于自然因素的作用,小麦产量由均衡水平0Q*减少到0Q, 则第一年的市场上小麦供不应求,价格上升为OP,。 第二年,生产者根据OP,价格生产了OQ2单位小麦,导致小麦供过于求,价 格下降到OP2。 第三年,生产者根据0P,价格生产了OQ,单位小麦,导致小麦供不应求,价 格下降到OP3 如此循环反复,价格与产量的波动幅度越来越大,离均衡点越来越远。 由于价格与产量背离均衡状态后,无法回复到原来的均衡点,换句话说, 由于这一句均衡价格体身是属于不稳定均衡的,因此,我们称,供给曲线每年 率绝对值小于需求曲线斜率绝对值,为蛛网不稳定条件,相应的蛛网为“发散 型蛛网”。 第三,当产品的供给曲线率的绝对值等于需求曲线斜率的绝对值时,价格 与产量背离均衡状态后,会围绕均衡水平上下波动,既不更加远离均衡点,也 不更加趋向于均衡点,见图2-28。 图2-28封闭型蛛网 在图2-28中,价格与产量背离均衡状态后,始终按同一幅度围绕均衡点上 下波动。比如,当企业第一年生产OQ,单位产品时,价格会上升到OP;第二年 企业按OP,价格者又按OP2价格生产OQ,价格生产0Q2单位产品时,价格又下降 OP2:第三年生产者又按OP2价格生产OQ,单位产品,价格又升至OP1,…如 此循环反复。 针对这种特殊情况,我们称,产品需求“曲线斜率的绝对值等于供给曲线 斜率的绝对值,为蛛网中立条件,相应的蛛网为:封闭型蛛网
三、蛛网模型的评价 蛛网模型运用动态分析方法,考察了不同时期内给价格与产量的相互作用 和影响问题,可以在一定程度上对某些生产周期较长的产品的价格与产量波动 现象进行解释。从这一点上看,蛛网模型比前面的静态的均衡价格模型更贴近 现实。 但是,也庆注意到,蛛网模型是一种非常简单的动态模型,有很大的缺陷。 在该模型中,经济主体仅仅以过去产品的价格来预期未来价格,换句话说,他 们不能根据现实情况的变化随时调整自己的预期,而只是进行简单的静态预期, 这不符合经济主体具有理性的假设。事实上,有些理性的生产者会发现价格与 产量的波动规律,反其道而行之,在本期产品价格升高时,减少下一时期产品 产量;而在本期产品价格降低时,增加下一时期产量。此外,如果价格如同蛛 网模型所预测的那样具有规律性,理性的投机者会在低价时买进,高价时卖出, 从而在一定程度上减缓价格波动幅度。 第六节均衡价格理论的应用 一、1988年的“抢购风” 在1988年初,民间流传着这样一个“小道消息”:政府的价格体制改革将 一步到位,所有产品的价格管制都将放开,价格将全面上涨“,当然,后来事 实的证明,这一消息纯属子虚乌有。但是,在当时,由于老百姓预期所有商品 的价格都会上涨,于是开始进行狂热的抢购,大至地毯,自行车、收录机,小 至食盐,火柴等,都成为被抢购的商品。应该说,在抢购风中受益的是企业。 许多商店的存货被抢购一空,更有一些商店,乘机将质次价高的商品全面销售 出去。 从经济学角度讲,上述事例反映了预期价格发生变动对当前需求行为的影响, 我们可以用图2-29来分析这种情况。 图2-29抢购风”对当前需求行为的影响 在图2-29中,某种商品(如低质量的收录机)的价格最初为0P,其供给 大于需求,即企业积压了许多存货。当人们预期价格将会上升以后,对该商品 需求增加,这使得需求曲线由D,向右平行移动到D,的位置。这表明,在价格保 持不变(即仍为OP,)时,消费者对该商品的需求量增加为OQ,超过了企业对 商品的供给量0Q2。这实际上意味着,企业在将原本处于过剩状念的全部产品都 抛售出去以后,仍然面临着供不应求的局面。 二、1973年的“石油危机” 在1973年,阿拉伯世界与色列之间发生了第四次中东战争。为了抗议美国 等西方发达国家的支持,阿拉伯国家联合起来,共同减少石油的产量,并伴之 以提价禁运等辅助措施。由于阿拉伯的石油产量在世界石油总产量中占有非常 大的比例,因此上述石油减产,禁运等措施导致发达国家石油市场上的石油供 给大幅度减少,石油价格猛涨。如图2-30所示。 图2-30“石油危机”对发达国家石油供给的影响
石油价格上涨,又导致人们对石油的互补品与替代吕的需求发生变动,进 而引起这些商品价格的变化。 以美国的汽车为例。在石油危机的以前,美国人通常开着大型豪华及耗油的轿 车,而德国人、日本人则通常开着节油的小型轿车。当时美国人曾以此引以为 豪,认为只有有钱的美国人才开得起豪华的大轿车。但石油危机发生后,面对 着昂贵的石油,许多美国人在购车时,放弃了对美国国产大轿车的购买,转而 去购买德国或日本生产的小型节油车,由此导致日、德汽车长驱直入美国市场。 这也为日后的日美汽车战拉开了帷幕。图2-31描述了石油价格上涨对美国汽车 需求的影响。 图2-31石油价格上涨对美国汽车需求的影响。 三、最低工资制( 在西方发达国家,有些地方存在着种族歧视或性别歧视的现象。同样的工 作时间与劳动强度,但黑人的工资要低于白人:女性的工资低于男性。基于这 一现象,某些妇女组织或黑人工人代表提出了最低工资制的口号,要求同工同 酬。而某些政府会员,为了赢得选民的好感,也通常将“最低工资制”做为其 竞选纲领之一。 那么,最低工资制的实施,真得能使弱者(受歧视者)的利益得到充分的 保护吗?下面我们从经济学角度对之进行分析。 假设某地区存在着歧视妇女的现象,为此,政府部门明文规定:妇女的工 资最低应与男性工资持平,否则要对雇主进行惩罚。在图2-32中,纵轴表示工 资,横轴表示就业人数。妇女的工资水平原为OW,就业人数为ON。政府规定, 妇女工资最低不得低于OW2(0W,为男性工人的工资水平)。显然,当妇女工资为 0W,时,雇主会大量减少对女性工人的使用,而以更多地使用男工或机器来替代 之。其结果,许多妇女由NN表示在OW2的高工资水平上愿意工作却找不到工 作,即处于失业状态。可以想像,对于一个连工作机会都不到的人来说,高工 资无任何意义,因此,最低工资制只是某些机构或团体用以达到自己怕某些特 定目的的政治口号,而不能真正保护被歧视的利益。 图2-32最低工资制的经济效应 四、法国住房的租金管制 在第二世界大战期间,许多法国人抱怨房屋的租金太高,认为房东的心太黑, 赚取了大量的不该得到的收入,要求政府予以管制。于是,当时的法国政府为 房东出租房屋所收取的租金规定了一个低于原来租金水平的上限。那么,租金 下降,是否使更多的法国人有房可住呢?回答是否定的。 图2-33租金的上限管制 我们用图2-33来说明这一现象。图中的纵轴表示租金水平,横轴表示住房 面积。在政府干预以前,每单位住房的租金水平为O。政府规定的租金上限为 OR2。可以看出,当租金水平降低工业区OR2以后,人们对住房需求量增加为OQ3
而房主对住房的供给量则减少为OQ2,这就很容易使我们理解这样一个事实:在 当时的法国,一方面,每年有千百万间房屋闲置(因为房东觉得出租住房无利 可图),另一方面,每年有大量的居民有钱租不到住房。对于有幸以低价租到住 房的法国人来说,他们所得到的服务的质量也大打折扣,房主不愿为他们提供 热水,不愿对房屋进行及时的清扫或修缮。 对房屋租金的上限进行管制,还对法国的建筑生产了不利的影响,许多投 资者认为修建公寓楼无利可图,因而将资金用作其它用途,这导致法国的住宅 业在相当长的一段时期内处于供给不足的局面。直到后来法国政府取消了这一 租金管制,情况才发生好转。 第一章数学附录I一蛛网定理的数学证明 蛛网模型 12,将g21)式和(2.22)式代入(2.23)式,有(2.21) a-bP,=-C+dP- (2.24) 根据(2.24)式可以推导出 当市场上于均衡状态时,均衡价格P*=P=P, 因此根据(2.24)式有 p+=PI=PI-1-ate (2.26) b+d 将(2.26)式代入(2.25)式,有 -(+…-(别 -m(+P (2.27) 根据(2.27)式可知,当t-→o时, (1)如果d<b(即需求曲线斜率绝对值大于供给曲线斜率绝对值),则 时间t的增加,实际价格P,在围绕均衡价格P* 幅度会越来越小,最终趋近于均衡价格。这反映在几何图形上,即为收敛型蛛 网。 (2)如果d>b(即供给曲线斜率的绝对值大于需求曲线斜率的绝对值), 则>1。这表明,随着时间t的增加,实际价格P,在围绕均衡价格P*上下波 动时,波动幅度会越来越大,最终无限地远离均衡价格。这反映在几何图形上