第五章质量传递5.1在一细管中,底部水在恒定温度298K下向干空气蒸发。干空气压力为0.1×10%pa、温度亦为298K。水蒸气在管内的扩散距离(由液面到管顶部)L=20cm。在0.1x×10Pa、298K的温度时,水蒸气在空气中的扩散系数为DAB=2.50×10-5m?/s。试求稳态扩散时水蒸气的传质通量、传质分系数及浓度分布。解:由题得,298K下水蒸气饱和蒸气压为3.1684×10'Pa,则p4./=3.1684x103Pa,pA.0=0PB,-PBj=0.9841×10°PaPBm=In(Ps0/Ps.)(1)稳态扩散时水蒸气的传质通量:DABP(PAi-PA.O)2 = 1.62×10- mol/(cm2 s)N.=RTpBmL(2)传质分系数:NA=5.11×10-mol/(cm2·s·Pa)KG(PA,i - PA,o)(3)由题有7-Y-YAiyA./=3.1684/100=0.031684y4.0=0简化得YA =10.9683(I-52)5.2在总压为2.026×105Pa、温度为298K的条件下,组分A和B进行等分子反向扩散。当组分A在两端点处的分压分别为pA/=0.4x105Pa和p4.2=0.1×10'Pa时,由实验测得kG=1.26×10-8kmol/(ms·Pa),试估算在同样的条件下,组分A通过停滞组分B的传质系数kG以及传质通量NA。解:由题有,等分子反向扩散时的传质通量为1
1 Ѩゴ 䋼䞣Ӵ䗦 5.1 ϔ㒚ㅵЁˈᑩ䚼∈ᘦᅮ⏽ᑺ 298K ϟᑆぎ⇨㪌থDŽᑆぎ⇨य़Ў 0.1×106paǃ⏽ᑺѺЎ 298KDŽ∈㪌⇨ㅵݙⱘᠽᬷ䎱⾏˄⬅⎆䴶ࠄㅵ乊䚼˅L˙ 20cmDŽ 0.1×106Paǃ298K ⱘ⏽ᑺᯊˈ∈㪌⇨ぎ⇨Ёⱘᠽᬷ㋏᭄Ў DAB˙ 2.50×10-5m2 /sDŽ䆩∖〇ᗕᠽᬷᯊ∈㪌⇨ⱘӴ䋼䗮䞣ǃӴ䋼ߚLTD᭄ঞ⌧ᑺߚᏗDŽ 㾷˖⬅乬ᕫˈ298K ϟ∈㪌⇨佅㪌⇨य़Ў 3.1684×103Paˈ߭ pA,i˙3.1684×103PaˈpA,0˙0 ,0 , 5 , ,0 , - 0.9841 10 Pa ln B Bi B m B Bi p p p p p u ˄1˅ 〇ᗕᠽᬷᯊ∈㪌⇨ⱘӴ䋼䗮䞣˖ , ,0 4 2 A , - N 1.62 10 mol cm s AB A i A B m D pp p RTp L u ˄2˅ Ӵ䋼ߚLTD᭄˖ 8 2 , ,0 5.11 10 mol cm s Pa A G Ai A N k p p u ˄3˅⬅乬᳝ ,0 , , 1 1 1 1 z L A A Ai A i y y y y § · ¨ ¸ © ¹ yA,i˙3.1684/100˙0.031684 yA,0˙0 ㅔ࣪ᕫ (1 5z) A y 1 0.9683 5.2 ᘏय़Ў 2.026×105Paǃ⏽ᑺЎ 298K ⱘᴵӊϟˈ㒘ߚ A B 䖯㸠ㄝߚ ᄤডᠽᬷDŽᔧ㒘ߚ A ϸッ⚍໘ⱘߚय़߿ߚЎ pA,1˙0.4×105Pa pA,2˙ 0.1×105Pa ᯊˈ⬅ᅲ偠⌟ᕫ k 0 G˙1.26×10-8kmol/(m2 ·s·Pa)ˈ䆩Ԅㅫৠḋⱘᴵӊϟˈ 㒘ߚ A 䗮䖛ذ⒲㒘ߚ B ⱘӴ䋼㋏᭄ kGҹঞӴ䋼䗮䞣 NADŽ 㾷˖⬅乬᳝ˈㄝߚᄤডᠽᬷᯊⱘӴ䋼䗮䞣Ў
DAb(PA, - PA2)N = k(Pal- Pa2)- -RTL单向扩散时的传质通量为N, =ko(Paul-Pa)- Dap(Pau-Pa)RTpBmL所以有N,=kG(pal- Pa),PPB.又有PB,2 - PB.I=1.75×10°PaPBmIn(PB2/PB)即可得ko= kg P=1.44x10-mol/(m2-s:Pa)PBmN,= kc (Pa.l - Pa2)=0.44mol/(m2.s)5.3浅盘中装有清水,其深度为5mm,水的分子依靠分子扩散方式逐渐蒸发到大气中,试求盘中水完全蒸干所需要的时间。假设扩散时水的分子通过一层厚4mm、温度为30℃的静止空气层,空气层以外的空气中水蒸气的分压为零。分子扩散系数DAB=0.11m?/h.水温可视为与空气相同。当地大气压力为1.01×105Pa。解:由题,水的蒸发可视为单向扩散DABP(PA -PA.O)N.=RTpB,m=30℃下的水饱和蒸气压为4.2474×103Pa,水的密度为995.7kg/m3故水的物质的量浓度为995.7×103/18=0.5532×105mol/m30℃时的分子扩散系数为DAB=0.11m2/hp4i=4.2474×103Pa,pA.0=02
2 ,1 ,2 0 0 ,1 ,2 AB A A A GA A Dp p N kp p RTL ऩᠽᬷᯊⱘӴ䋼䗮䞣Ў ,1 ,2 ,1 ,2 , AB A A A GA A B m D pp p N kp p RTp L ᠔ҹ᳝ 0 ,1 ,2 , A GA A B m p N kp p p জ᳝ ,2 ,1 5 , ,2 ,1 1.75 10 Pa ln B B B m B B p p p p p u ेৃᕫ 0 , G G B m p k k p =1.44×10-5mol/(m2 ·s·Pa) 2 ,1 ,2 0.44 mol m s N kp p A GA A 5.3 ⌙ⲬЁ㺙᳝⏙∈ˈ݊⏅ᑺЎ 5mmˈ∈ⱘߚᄤձ䴴ߚᄤᠽᬷᮍᓣ䗤⏤㪌থ ࠄ⇨Ёˈ䆩∖ⲬЁ∈ᅠܼ㪌ᑆ᠔䳔㽕ⱘᯊ䯈DŽ؛䆒ᠽᬷᯊ∈ⱘߚᄤ䗮䖛ϔሖ८ 4mmǃ⏽ᑺЎ 30ćⱘ䴭ℶぎ⇨ሖˈぎ⇨ሖҹⱘぎ⇨Ё∈㪌⇨ⱘߚय़Ў䳊DŽߚ ᄤᠽᬷ㋏᭄ DAB˙0.11m2 /h.∈⏽ৃ㾚ЎϢぎ⇨ⳌৠDŽᔧഄ⇨य़Ў 1.01×105PaDŽ 㾷˖⬅乬ˈ∈ⱘ㪌থৃ㾚Ўऩᠽᬷ , ,0 , AB A i A A B m D pp p N RTp z 30ćϟⱘ∈佅㪌⇨य़Ў 4.2474×103Pa ˈ∈ⱘᆚᑺЎ 995.7kg/m3 ᬙ∈ⱘ⠽䋼ⱘ䞣⌧ᑺЎ 995.7 ×103 /18˙0.5532×105mol/m3 30ćᯊⱘߚᄤᠽᬷ㋏᭄Ў DAB˙0.11m2 /h pA,i˙4.2474×103Pa ˈpA,0˙0
PB,o-PBj=0.9886x10'PaPBm= In(PBo/ s.)又有NA=c本Vl(At)(4mm的静止空气层厚度认为不变)所以有C 永V/(A-t)=DABP(pA,i-PA,0)/(RTpB.mz)可得t=5.8h故需5.8小时才可完全蒸发。5.4内径为30mm的量筒中装有水,水温为298K,周围空气温度为30℃,压力为1.01×10'Pa,空气中水蒸气含量很低,可忽略不计。量筒中水面到上沿的距离为10mm,假设在此空间中空气静止,在量筒口上空气流动,可以把蒸发出的水蒸气很快带走。试问经过2d后,量筒中的水面降低多少?查表得298K时水在空气中的分子扩散系数为0.26×104m2/s。解:由题有,25℃下的水饱和蒸气压为3.1684×103Pa,水的密度为995.7kg/m故水的物质的量浓度c*为995.7×103/18=0.5532×105mol/m330℃时的分子扩散系数为DAB=Do(T/To)l.75=0.26×10-m2/s×(303/298)1.75=2.6768×10-m2/sPA./=3.1684×103Pa,pA.0=0pB,m=(pB.0—pB.a)/ln(pB.o/pB,)=0.99737×105Pa文有NA=c*dV/(A·dt)=c*dz/dt所以有C 水dz/dt=DABp(p4,i-p4.0)/(RT pB,m z)分离变量,取边界条件ti=0,Z1=Zo=0.01及t2=2d,Z2=Z,积分有Teao DapPpu Ppo) a00 dz = JRTPBmC水可得z=0.0177m4z=z-z0=0.0077m=7.7mm5.5一填料塔在大气压和295K下,用清水吸收氨一空气混合物中的氨。传3
3 ,0 , 5 , ,0 , 0.9886 10 Pa ln B Bi B m B Bi p p p p p u জ᳝ NA˙c ∈ V/(A·t)(4mm ⱘ䴭ℶぎ⇨ሖ८ᑺ䅸Ўϡব) ᠔ҹ᳝ c ∈V/(A·t)˙DABp(pA,iˉpA,0)/(RTpB,m z) ৃᕫ t˙5.8h ᬙ䳔 5.8 ᇣᯊᠡৃᅠܼ㪌থDŽ 5.4 ݙᕘЎ 30mm ⱘ䞣ㄦЁ㺙᳝∈ˈ∈⏽Ў 298Kˈ਼ೈぎ⇨⏽ᑺЎ 30ćˈ य़Ў 1.01×105Paˈぎ⇨Ё∈㪌⇨䞣ᕜԢˈৃᗑ⬹ϡ䅵DŽ䞣ㄦЁ∈䴶ࠄϞ⊓ⱘ 䎱⾏Ў 10mmˈ؛䆒ℸぎ䯈Ёぎ⇨䴭ℶˈ䞣ㄦষϞぎ⇨⌕ࡼৃˈҹᡞ㪌থߎ ⱘ∈㪌⇨ᕜᖿᏺ䍄DŽ䆩䯂㒣䖛 2d ৢˈ䞣ㄦЁⱘ∈䴶䰡Ԣᇥ˛ᶹ㸼ᕫ 298K ᯊ ∈ぎ⇨Ёⱘߚᄤᠽᬷ㋏᭄Ў 0.26×10-4m2 /sDŽ 㾷˖⬅乬᳝ˈ25ćϟⱘ∈佅㪌⇨य़Ў 3.1684×103Paˈ∈ⱘᆚᑺЎ 995.7kg/m3 ᬙ∈ⱘ⠽䋼ⱘ䞣⌧ᑺ c ∈Ў 995.7×103 /18˙0.5532×105mol/m3 30ćᯊⱘߚᄤᠽᬷ㋏᭄Ў DAB˙D0(T/T0) 1.75˙0.26×10-4m2 /s×(303/298)1.75˙2.6768×10-5m2 /s pA,i˙3.1684×103PaˈpA,0˙0 pB,m˙(pB,0ˉpB,i)/ln(pB,0/pB,i)˙0.99737×105Pa জ᳝ NA˙c ∈dV/(A·dt)˙c ∈dz/dt ᠔ҹ᳝ c ∈dz/dt˙DABp(pA,iˉpA,0)/(RT pB,m z) ߚ行ব䞣ˈপ䖍⬠ᴵӊ t1˙0ˈz1˙z0˙0.01 ঞ t2˙2d, z2˙zˈ⿃ߚ᳝ z 2 24 3600 , ,0 0.01 0 , ( ) d d AB a i a B m D pp p zz t RTp c u u ³ ³ ∈ ৃᕫ z˙0.0177m ǻz˙zˉz0˙0.0077m˙7.7mm 5.5 ϔ฿᭭ศ⇨य़ 295K ϟˈ⫼⏙∈ᬊ⇼ˉぎ⇨⏋ড়⠽Ёⱘ⇼DŽӴ
质阻力可以认为集中在1mm厚的静止气膜中。在塔内某一点上,氨的分压为6.6×103N/m2。水面上氨的平衡分压可以忽略不计。已知氮在空气中的扩散系数为0.236×104m2/s。试求该点上氨的传质速率。解:设pB,1,PB2分别为氨在相界面和气相主体的分压,PB,m为相界面和气相主体间的对数平均分压由题意得:Pa2-PB=0.97963×10'PaPe,m = In(Ps2 /Peg.)DAsp(PA/Pa2) =6.57×10- mo/(m2 -s)NA=1RTPBmL5.6一直径为2m的贮槽中装有质量分数为0.1的氮水,因疏忽没有加盖,则氨以分子扩散形式挥发。假定扩散通过一层厚度为5mm的静止空气层。在1.01×105Pa、293K下,氨的分子扩散系数为1.8×10-5m2/s,计算12h中氨的挥发损失量。计算中不考虑氨水浓度的变化,氮在20℃时的相平衡关系为P=2.69×105x(Pa),x为摩尔分数。解:由题,设溶液质量为ag氮的物质的量为0.1a/17mol总物质的量为(0.9a/18+0.1a/17)mol0.1a/17所以有氨的摩尔分数为x==0.10530.9a/18+0.1a/17故有氨的平衡分压为p=0.1053×2.69×10Pa=0.2832×10'Pa即有PA./=0.2832×10-Pa,PA0=0PB.0 PB.= 0.8608×10°PaPe.m = In(Pe.0/Pa.)所以DABP(PA.i - PA,O)= 4.91×10-mol/(m2.s)Na=RTpB.mL4
4 䋼䰏ৃҹ䅸Ў䲚Ё 1mm ८ⱘ䴭ℶ⇨㝰ЁDŽศݙᶤϔ⚍Ϟˈ⇼ⱘߚय़Ў 6.6×103N/m2DŽ∈䴶Ϟ⇼ⱘᑇ㸵ߚय़ৃҹᗑ⬹ϡ䅵DŽᏆⶹ⇼ぎ⇨Ёⱘᠽᬷ㋏᭄ Ў 0.236×10-4m2 /sDŽ䆩∖䆹⚍Ϟ⇼ⱘӴ䋼䗳⥛DŽ 㾷˖䆒 pB,1,pB,2 ߿ߚЎ⇼Ⳍ⬠䴶⇨ⳌЏԧⱘߚय़ˈpB,m ЎⳌ⬠䴶⇨Ⳍ Џԧ䯈ⱘᇍ᭄ᑇഛߚय़ ⬅乬ᛣᕫ˖ B,2 B,1 5 B,m B,2 B,1 p p p 0.97963 10 Pa ln p p u AB A,1 A,2 2 2 A B,m D pp p N 6.57 10 mol m s RTp L u 5.6 ϔⳈᕘЎ 2m ⱘ䌂ῑЁ㺙᳝䋼䞣ߚ᭄Ў 0.1 ⱘ⇼∈ˈ⭣ᗑ≵᳝ࡴⲪˈ ߭⇼ҹߚᄤᠽᬷᔶᓣথDŽ؛ᅮᠽᬷ䗮䖛ϔሖ८ᑺЎ 5mm ⱘ䴭ℶぎ⇨ሖDŽ 1.01×105Paǃ293K ϟˈ⇼ⱘߚᄤᠽᬷ㋏᭄Ў 1.8×10-5m2 /sˈ䅵ㅫ 12h Ё⇼ⱘথ ᤳ༅䞣DŽ䅵ㅫЁϡ㗗㰥⇼∈⌧ᑺⱘব࣪ ⇼ˈ20ćᯊⱘⳌᑇ㸵݇㋏Ў P=2.69×105x(Pa)ˈx Ўᨽᇨߚ᭄DŽ 㾷˖⬅乬ˈ䆒⒊⎆䋼䞣Ў a g ⇼ⱘ⠽䋼ⱘ䞣Ў 0.1a/17mol ᘏ⠽䋼ⱘ䞣Ў(0.9a/18ˇ0.1a/17)mol ᠔ҹ᳝⇼ⱘᨽᇨߚ᭄Ў 0.1a 17 x 0.1053 0.9a 18 0.1a 17 ᬙ᳝⇼ⱘᑇ㸵ߚय़Ў p˙0.1053×2.69×105Pa˙0.2832×105Pa े᳝ pA,i˙0.2832×105PaˈPA0˙0 B,0 B,i 5 B,m B,0 B,i p p p 0.8608 10 Pa ln p p u ᠔ҹ AB A,i A,0 2 2 A B,m D pp p N 4.91 10 mol m s RTp L u
元d?-t=6.66x10moln-N45.7在温度为25℃、压力为1.013x105Pa下,一个原始直径为0.1cm的氧气泡浸没于搅动着的纯水中,7min后,气泡直径减小为0.054cm,试求系统的传质系数。水中氧气的饱和浓度为1.5×10-3mol/L。解:对氧气进行质量衡算,有-CA,GdV/dt=k(cA.s-CA)A即dr/dt=-k(cA,s -CA)/cA,G由题有CA.s=1.5×10-3mol/LCA=0CA.G=p/RT=1.013×105s/(8.314×298)mol/m3=40.89mol/m3所以有dr=—0.03668kxdt根据边界条件t=0,r/=5×104mt2=420s,r2=2.7×10-m积分,解得k=1.49×10-5m/s5.8溴粒在搅拌下迅速溶解于水,3min后,测得溶液浓度为50%饱和度,试求系统的传质系数。假设液相主体浓度均匀,单位溶液体积的溴粒表面积为α,初始水中溴含量为0,溴粒表面处饱和浓度为cA.S。解:设溴粒的表面积为A,溶液体积为V,对溴进行质量衡算,有d(VcA)/dt=k(cA.S-CA)A因为a=A/V,则有dcA/dt=ka(cAs-CA)5
5 2 3 A d n=N t 6.66 10 mol 4 S u 5.7 ⏽ᑺЎ 25ćǃय़Ў 1.013×105Pa ϟˈϔϾॳྟⳈᕘЎ 0.1cm ⱘ⇻⇨ ⊵⍌≵Ѣ᧙ࡼⴔⱘ㒃∈Ёˈ7min ৢˈ⇨⊵ⳈᕘޣᇣЎ 0.054cmˈ䆩∖㋏㒳ⱘӴ䋼 ㋏᭄DŽ∈Ё⇻⇨ⱘ佅⌧ᑺЎ 1.5×10-3mol/LDŽ 㾷˖ᇍ⇻⇨䖯㸠䋼䞣㸵ㅫˈ᳝ ˉcA,GdV/dt˙k(cA,sˉcA)A े dr/dt˙ˉk(cA,sˉcA)/cA,G ⬅乬᳝ cA,s˙1.5×10-3mol/L cA˙0 cA,G˙p/RT˙1.013×105 /(8.314×298)mol/m3˙40.89mol/m3 ᠔ҹ᳝ dr˙ˉ0.03668k×dt ḍ䖍⬠ᴵӊ t1˙0ˈr1˙5×10-4m t2˙420sˈr2˙2.7×10-4m 㾷ᕫˈߚ鳥 k˙1.49×10-5m/s 5.8 ⒈㉦᧙ᢠϟ䖙䗳⒊㾷Ѣ∈ˈ3min ৢˈ⌟ᕫ⒊⎆⌧ᑺЎ 50ˁ佅ᑺˈ 䆩∖㋏㒳ⱘӴ䋼㋏᭄DŽ؛䆒⎆ⳌЏԧ⌧ᑺഛࣔˈऩԡ⒊⎆ԧ⿃ⱘ⒈㉦㸼䴶⿃Ў aˈ ߱ྟ∈Ё⒈䞣Ў 0ˈ⒈㉦㸼䴶໘佅⌧ᑺЎ cA,SDŽ 㾷˖䆒⒈㉦ⱘ㸼䴶⿃Ў Aˈ⒊⎆ԧ⿃Ў Vˈᇍ⒈䖯㸠䋼䞣㸵ㅫ,᳝ d(VcA)/dt˙k(cA,SˉcA)A Ў a˙A/Vˈ᳝߭ dcA/dt˙ka˄cA,SˉcA˅