Chapter 4 Special Symbols A-annual payment,an end-of-period cash amount in a uniform series continuing for n periods 资金的年值或等额年值 The entire series is equivalent to P or F at interest rate i
Chapter 4 Special Symbols A—— annual payment, an end-of-period cash amount in a uniform series continuing for n periods 资金的年值 或 等额年值 The entire series is equivalent to P or F at interest rate i
Chapter 4 Fig.5.3 Definition sketch of discounting terms i=discount rate -n periods- 个A个A个A个A个A个A个A个A个AA 0 1 period P-present worth F—future worth A-equivalent annual payment benefits i-interest rate discount rate n-number of interest period
Chapter 4 Fig.5.3 Definition sketch of discounting terms P—— present worth F——future worth A—— equivalent annual payment / benefits i —— interest rate / discount rate n —— number of interest period
Chapter 4 Formula1.一次收付期值/终值公式 F=P(1+i)n? 银行按复利计算式 已知现值求终值 Or: F=PFBi,n] Where:(1+i)=[FB i,n ]F/P is known as Single-payment compound-amount factor 一次整付复合因子/一次收付期值因子
Chapter 4 Formula 1. 一次收付期值 / 终值公式 Single-payment compound-amount factor 一次整付复合因子 / 一次收付 期值 因子 F = P ( 1+ i ) n ? —— 银行按复利计算式 已知现值求终值 Or : F = P [ F/P, i, n ] Where: ( 1+ i ) n = [ F/P, i, n ] = F/P is known as
Chapter 4 Problem 1 本金现值P,(P=100万元) 年利率i相同,(i=10%) 若计息期n不同(月或年), →n=5年,m=? 终值F是否相同? 一(作业)
Chapter 4 Problem 1 本金现值 P,( P = 100 万元 ) 年利率 i 相同,(i = 10% ) 若计息期 n 不同(月或年), n = 5年 ,m = ? 终值 F 是否相同 ? ——(作业)
Chapter 4 Problem 1 解: 按年计息i=10%,n=5yr F=P[%,i,m=100(1+10%)5=161.05万元 按月计息i=0.1/12=0.00833=0.83%, 计算周期m=5×12=60 month F=P[%,i,=1001+0.83%0=1645万元
Chapter 4 Problem 1 解:按年计息 i =10%, n = 5 yr 5 [ , , ] 100(1 10%) 161.05 F F P i n P 万元 按月计息 i = 0.1/12 = 0.00833 = 0.83%, 计算周期 m = 5 ×12 = 60 month F P[ F P ,i,n] 100(1 0.8 3% )6 0 164.5万元