第二部分信号的检测 广东工业大学机电工程学院 伯德图一一幅频特性 10 0 -10 -20 H(s)=0.1s+1 10 2030405060708090 伯德图一一相频特性 50 -100 -150 0 10 20 30405060708090 实际测量装置不可能在非常宽广的频率范围内都满足无失 真测试条件,即使在某一频率范围内工作,也难以完全理想的 实现不失真测试。只能努力把失真限制在一定的误差范围内。 因此,首先要选择合适的测试装置。其次,应对输入 信号做必要的前置处理,及时滤去非信号频带内的噪声
第二部分 信号的检测 广东工业大学机电工程学院 实际测量装置不可能在非常宽广的频率范围内都满足无失 真测试条件,即使在某一频率范围内工作,也难以完全理想的 实现不失真测试。只能努力把失真限制在一定的误差范围内。 因此,首先要选择合适的测试装置。其次,应对输入 信号做必要的前置处理,及时滤去非信号频带内的噪声。 1 0.1 1 H s s
第二部分信号的检测 广东工业大学机电工程学院 2.1.5典型系统的动态特性 1.一阶系统 x(t) y(t) 1)微分方程 a 2+aoy()=box(t) y(t) x(t) (位移) ↓(力) 改写为 )=Sx() r=a ao S=b/a为系统灵敏度 令S=l,即 r9+)=)
第二部分 信号的检测 广东工业大学机电工程学院 2.1.5 典型系统的动态特性 00 abS 1 0 a a txty dt dy t txbtyaa dt dy t 1 0 0 ty Sx t dt dy t R x(t) C y(t) k c y(t) (位移) x(t) (力) 令S=1,即 1. 一阶系统 1) 微分方程 改写为 为系统灵敏度
第二部分信号的检测 广东工业大学机电工程学院 2)传递函数 H(s)= 3)频率特性 o(o)=-arctan(ro) 奈魁斯特图 奈魁斯特图 -0.05 -T=0.05 0.1 -0.15 -02 ∈-025 -0.3 -0.35 -0.4 -0.45 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Re
第二部分 信号的检测 广东工业大学机电工程学院 2) 传递函数 2 1 1 1 1 arctan j A H j 1 1 H s s 3) 频率特性 奈魁斯特图
第二部分信号的检测 广东工业大学机电工程学院」 频率特性分析: A(O)=1 (1)一阶系统是一个低通环 0 节。只有当o远小于1/时, 幅频响应才接近于1,因此 10 -20dB/dec斜率的直线 一阶系统只适用于被测量缓 -20 慢或低频的参数。 (2)o=1/:时幅频特性降为原 来的0.707(即一3dB),相位 4 角滞后45°,时间常数τ决定了 -90 1/10t l/t 10/r 测试系统的工作频率范围。 wls 0<<1/时:A(o)=1 零阶 3)o>>1/r时,为-20dB/dec 的斜直。 0<1/10τ时:p(o)=0一·无滞后 @>l/r时:A(@)↓一→幅值衰减 p(o)↓一→相位滞后 误美
第二部分 信号的检测 广东工业大学机电工程学院 (1) 一阶系统是一个低通环 节。只有当 远小于1/ 时, 幅频响应才接近于 1,因此 一阶系统只适用于被测量缓 慢或低频的参数。 <<1/ 时: A( )=1 零阶 <<1/10 时: ( )=0 无滞后 误差 >1/ 时:A( ) ( ) 幅值衰减 相位滞后 (2) =1/ 时幅频特性降为原 来的0.707(即-3dB),相位 角滞后45 o ,时间常数 决定了 测试系统的工作频率范围。 频率特性分析: A( )=1 -20dB/dec斜率的直线 (3) >>1/ 时, 为-20dB/dec 的斜直
洲 广东工业大学机电工程学院 4)单位阶跃响应 ·阶跃信号的Laplace: X(s)= 1- Y()-X(5)H(s)+1) Y(S)的拉氏逆变换 y(t)=1-eihr y.() 95% A 小 大 0 T 2t 3t t
广东工业大学机电工程学院 1 1 )()( ss sHsXsY •阶跃信号的Laplace : s sX 1 4)单位阶跃响应 / 1)( t ety •Y(s)的拉氏逆变换 95%