第三讲 换元积分法
第三讲 换元积分法
不定积分 1.基本积分公式 (8) sinxdx =-cosx +c (1) kdx =kx+c (9) cosxdx sinx +c xu+1 (2) xudx= u+1 +c(u≠-1) (10) sec2xdx tanx +c (3) -dx =Inx+c (11) csc2xdx =-cotx +c (4) exdx =ex+c (12) secxtanxdx secx +c Qx (5) axdx= +c(a>0,a≠1) Ina (13) cscxcotxdx =-cscx +c 1 (6) dx=-+c (14) dx arcsinx +c X ∫ dx=2vx+c (15) I+x7dx arctanx+e
(2) න 𝑥 𝑢𝑑𝑥 = 𝑥 𝑢+1 𝑢 + 1 + 𝑐 (𝑢 ≠ −1) (1) න 𝑘𝑑𝑥 = 𝑘𝑥 + 𝑐 (3) න 1 𝑥 𝑑𝑥 = 𝑙𝑛 |𝑥| + 𝑐 (4) න 𝑒 𝑥𝑑𝑥 = 𝑒 𝑥 + 𝑐 (5) න 𝑎 𝑥𝑑𝑥 = 𝑎 𝑥 𝑙𝑛𝑎 + 𝑐 (𝑎 > 0, 𝑎 ≠ 1) (6) න 1 𝑥 2 𝑑𝑥 = − 1 𝑥 + 𝑐 (9) න 𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑠𝑖𝑛𝑥 + 𝑐 (8) න 𝑠𝑖𝑛𝑥𝑑𝑥 = −𝑐𝑜𝑠𝑥 + 𝑐 (10) න 𝑠𝑒𝑐2𝑥𝑑𝑥 = 𝑡𝑎𝑛𝑥 + 𝑐 (11) න 𝑐𝑠𝑐 2𝑥𝑑𝑥 = −𝑐𝑜𝑡𝑥 + 𝑐 (12) න 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥𝑑𝑥 = sec𝑥 + 𝑐 (13) න 𝑐𝑠𝑐𝑥𝑐𝑜𝑡𝑥𝑑𝑥 = −𝑐𝑠𝑐𝑥 + 𝑐 (14) න 1 1 − 𝑥 2 𝑑𝑥 = 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 + 𝑐 (15) න 1 1 + 𝑥 2 𝑑𝑥 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 + 𝑐 (7) න 1 𝑥 𝑑𝑥 = 2 𝑥 + 𝑐 1.基本积分公式
不定积分 2.微分公式 例1.求下列函数的微分: 1 d(tanx)sec2xdx d(arcsinx) dx V1-x2 1 d(-cotx)=csc2xdx d(arctanx)=1+xdx 1 d(secx secxtanxdx d(arccosx) dx V1-x2 d(-cscx)cscxcotxdx 1 d(-arccotx)=1xdx
例1.求下列函数的微分: 𝒅( ) = 𝒔𝒆𝒄 𝟐𝒙𝒅𝒙 𝒅( ) = 𝒄𝒔𝒄 𝟐𝒙𝒅𝒙 𝒅( ) = 𝒔𝒆𝒄𝒙𝒕𝒂𝒏𝒙𝒅𝒙 𝒅( ) = 𝟏 𝟏 − 𝒙 𝟐 𝒅𝒙 𝒔𝒆𝒄𝒙 𝒂𝒓𝒄𝒔𝒊𝒏𝒙 𝒕𝒂𝒏𝒙 −𝒄𝒐𝒕𝒙 𝒅( ) = 𝟏 𝟏 + 𝒙 𝟐 𝒂𝒓𝒄𝒕𝒂𝒏𝒙 𝒅𝒙 𝒅(−𝒄𝒔𝒄𝒙) = 𝒄𝒔𝒄𝒙𝒄𝒐𝒕𝒙𝒅𝒙 𝒅( ) = 𝟏 𝟏 − 𝒙 𝟐 −𝒂𝒓𝒄𝒄𝒐𝒔𝒙 𝒅𝒙 𝒅( ) = 𝟏 𝟏 + 𝒙 𝟐 −𝒂𝒓𝒄𝒄𝒐𝒕𝒙 𝒅𝒙 2.微分公式
不定积分 例2:求下列不定积分。 (1)∫tanxsec2xdx (2)∫cotxcsc2xdx 解:=∫tanxdtanx 解:=∫cotxd(-cotx) =∫udu u tanx =-∫udu u cotx (tanx)C 2 =_(cotx)C 2
例2:求下列不定积分。 �𝒆𝒔𝒙𝒏𝒂𝒕� (1( �𝒔𝒄𝒙𝒕𝒐𝒄� (2𝟐𝒙𝒅𝒙 ( 𝟐𝒙𝒅𝒙 �𝒏𝒂𝒕𝒅𝒙𝒏𝒂𝒕� = :解 �𝒏𝒂𝒕� = �� �𝒅𝒖� = = (𝒕𝒂𝒏𝒙) 𝟐 𝟐 + 𝑪 (�𝒕𝒐𝒄�−)�𝒙𝒕𝒐𝒄� = :解 �𝒕𝒐𝒄� = �� �𝒅𝒖� −= = − (𝒄𝒐𝒕𝒙) 𝟐 𝟐 + 𝑪
不定积分 (1)∫tanxsec2xdx (2)∫cotxcsc2xdx 解:=∫secxdsecx 解:=∫cscxd(-cscx) =∫udu u secx =-∫udu u =CSCx (secx+C =-(cscx)+C 2 2
�𝒆𝒔𝒙𝒏𝒂𝒕� (1( �𝒔𝒄𝒙𝒕𝒐𝒄� (2𝟐𝒙𝒅𝒙 ( 𝟐𝒙𝒅𝒙 �𝒄𝒆𝒔𝒅𝒙𝒄𝒆𝒔� = :解 �𝒄𝒆𝒔� = �� �𝒅𝒖� = = (𝒔𝒆𝒄𝒙) 𝟐 𝟐 + 𝑪 (�𝒄𝒔𝒄�−)�𝒙𝒄𝒔𝒄� = :解 �𝒄𝒔𝒄� = �� �𝒅𝒖� −= = − (𝒄𝒔𝒄𝒙) 𝟐 𝟐 + 𝑪