一种基于密度的模糊自适应聚类算法

针对密度聚类算法对邻域参数设置敏感的问题,提出一种基于密度的模糊自适应聚类算法.算法在无需预先设置聚类数以及邻域参数的情况下,可以自适应地根据样本间距离关系确定邻域半径得到样本密度,并根据样本密度逐渐增加聚类中心.为了保障聚类结果的正确性,同时提出一种新的模糊聚类有效性指标以判断最佳聚类数,消除了密度聚类算法对参数的敏感性.用UCI基准数据集进行实验,发现本文算法在对数据进行聚类时,聚类质量较原始密度聚类算法在准确性和自适应性方面均有显著提高.
文件格式:PDF,文件大小:449.4KB,售价:2.16元
文档详细内容(约6页)
点击进入文档下载页(PDF格式)
共6页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录