基于多维时间序列形态特征的相似性动态聚类算法

由于时间序列数据具有高维度、动态性等特点,这就导致传统的数据挖掘技术很难有效的对其进行处理,为此,提出了一种基于多维时间序列形态特征的相似性动态聚类算法(similarity dynamical clustering algorithm based on multidimensionalshape features for time series,SDCTS).首先,提取多维时间序列的特征点以实现降维,然后,根据多维时间序列的斜率、长度和幅值变化的形态特征定义了一种新的时间序列相似性度量标准,进而提出无需人为给定聚类个数的多维时间序列动态聚类算法.实验结果表明,与其他算法相比,此算法对时间序列具有良好的聚类效果.
文件格式:PDF,文件大小:422.59KB,售价:3.24元
文档详细内容(约9页)
点击进入文档下载页(PDF格式)
共9页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录