基于CART决策树的冲压成形仿真数据挖掘

油箱壳外形复杂,拉深成形过程中容易出现侧壁起皱和圆角处破裂的缺陷,成形工艺参数的确定非常重要.结合分类与回归决策树(classification and regression tree,CART)的人工智能技术和模型交叉验证方法,通过调用Python平台开源库Scikit-Learn对油箱壳拉深成形数值模拟结果进行知识挖掘,筛选出对油箱壳拉深成形影响大的工艺参数;以基尼指数(Gini index)最小化作为最优特征值及最优切分点选择的依据,构建了工艺参数与性能指标关系的CART决策树,提取出了可靠的工艺设计规则.油箱壳拉深实例表明,CART决策树理论的知识发现技术是实现板料成形过程数值模拟结果潜在知识挖掘的可行途径.
文件格式:PDF,文件大小:3.55MB,售价:2.52元
文档详细内容(约7页)
点击进入文档下载页(PDF格式)
共7页,试读已结束,阅读完整版请下载

您可能感兴趣的文档

点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录