本课程是为数学系本科高年级学生开设的. 本课程讲述一般空间上的测度论的基础知 识和欧氏空间 n R 上的 Lebesgue 测度与积分理论. 现代数学的许多分支如概率论, 泛函分析, 群上调和分析等越来越多的用到一般空间 上的测度理论. 对数学专业的学生而言, 掌握一般空间上的测度论的基础知识, 已经变得越 来越重要. 因此本课程将一般空间上的测度论和 n R 上的 Lebesgue 积分结合起来讲述
文件格式: PDF大小: 82.69KB页数: 1
教学目的 本节讨论关于积分号下取极限的性质,即取极限和求积分交 换顺序的定理. 内容包括三个重要的定理以及一些推论. 本节要点 积分的极限定理有三个重要定理,即单调收敛定理, Fatou 引 理和控制收敛定理, 它们分别适用于不同的情况. 学习本节的内容应注意分 清各个定理的条件和结论
文件格式: PDF大小: 150.31KB页数: 4
教学目的 本节介绍积分的一些基本性质, 包括积分的线性性质, 积分 的不等式性质和积分的绝对连续性等. 这些性质都没有涉及到积分号下取极 限的问题, 积分取极限的性质讲在下一节介绍. 本节要点 一般测度空间上的积分,除了具有一些与经典积分类似的性 质外,还具有一些新的性质.应注意比较.学习本节的内容, 除了应了解积分的 基本性质外, 还应注意掌握一些基本的证明技巧
文件格式: PDF大小: 148.57KB页数: 4
教学目的 本节将考察欧氏空间上的可测函数和连续函数关系. 本节将 证明重要的 Lusin 定理, 它表明 Lebesgue 可测函数可以用性质较好连续函数 逼近. 这个结果在有些情况下是很有用的. 本节要点 一方面, L 可测集上的连续函数是可测的, 另一方面, Lusin 定 理表明, Lebesgue 可测函数可以用连续函数逼近. Lusin 定理有两个等价形 式. 另外, 作为准备定理的 Tietze 扩张定理本身也是一个很有用的结果
文件格式: PDF大小: 160.74KB页数: 5
教学目的 可测函数列可以定义各种收敛性. 本节讨论几乎处处收敛, 依测度收敛和几乎一致收敛. 几种收敛性之间存在一些蕴涵关系. 通过本节 的学习, 可以使学生对可测函数列的几种收敛性和相互关系有一个较全面的 了解
文件格式: PDF大小: 180.12KB页数: 6
教学目的 本节介绍有界变差函数的性质.证明有界变差函数的 Jordan 分解定理. 教学要点 有界变差函数的概念, 变差函数的性质, Jordan 分解定理
文件格式: PDF大小: 166.7KB页数: 5
在数学分析课程中我们知道, 微分与积分具有密切的联系. 一方面, 若 f (x) 在[a,b] 上连续, 则对任意 x ∈[a,b] 成立 f (t)dt f (x). x
文件格式: PDF大小: 193.49KB页数: 7
教学目的 本节讨论测度空间的乘积空间,并且证明一个重要的定理 —Fubini 定理. 本节要点 乘积测度的构造利用了§2.2 测度的延拓定理. Fubini 定理是 积分理论的基本定理之一,它是关于二元函数的二重积分,累次积分交换积 分顺序的定理.Fubini 定理在理论推导和计算积分方面有广泛的应用
文件格式: PDF大小: 224.49KB页数: 10
教学目的 本节考虑可积函数的逼近问题. 本节要证明几个关于积分的 逼近定理.主要是关于 Lebesgue 积分的逼近定理. 教学要点 Lebesgue 可积函数可以用比较简单的函数,特别是用连续函数 逼近. 由于连续函数具有较好的性质, 因此 L 可积函数的逼近性质在处理有 些问题时是很有用的.应通过例题和习题掌握这种方法. 设给定一个测度空间 (X , F ,µ), C 是可积函数类 L(µ) 的一个子类. 若对任意可积 函数 f ∈ L(µ) 和ε > 0, 存在一个 g ∈C , 使得 − µ < ε, ∫ f g d 则称可积函数可以用C 中的函数逼近
文件格式: PDF大小: 162.77KB页数: 4










