Sampling Counting for Big Data 南京大学 尹一通 2019年全国理论计算机科学学术年会 2019年8月3日于兰州大学
Sampling & Counting for Big Data + 2019ଙࢵقቘᦞᦇᓒᑀଙտ 2019ଙ8์3෭ԭهय़
Sampling vs Counting [Jerrum-Valiant-Vazirani86]:for all self-reducible problems approx counting exact sampling vol(R) X=(X1,X2,,X) Poly-Time Turing approx inference X~2 Machine Pr[X,=·|X=o] DOMIZED RANDOM GENERATION OF COMBINATORIAL STRUCTURES RITHMS FROM A UNIFORM DISTRIBUTION Mark R.JERRUM Department of Computer Science,University of Edinburgh,Edinburgh EH9 3JZ United Kingdom Leslie G.VALIANT Aiken Computation Laboratory,Harvard University,Cambridge,MA 02138,U.S.A. Vijay V.VAZIRANI** Computer Science Department,Comell University,Ithaca,NY 14853,U.S.A
Sampling vs Counting sampling exact approx { } X = (X1, X2, …, Xn) approx counting vol(Ω) approx inference Pr[Xi = ⋅ ∣ XS = σ] ( [Jerrum-Valiant-Vazirani ’86]: Poly-Time Turing Machine for all self-reducible problems X ∼ Ω
MCMC Sampling Markov chain for sampling=(X1,X2,...,X) Gibbs sampling(Glauber dynamics,heat-bath) pick a random i; [Glauber,'63] resample Xi~u(·W(); [Geman,Geman,'84] Metropolis-Hastings algorithm pick a random i; propose a random c; [Metropolis et al,'53] X=cwp.∝4(X)/u: [Hastings,'84] Analysis:coupling methods [Aldous,'83][Jerrum,'95][Bubley,Dyer '97] may give O(n log n)upper bound for mixing time
MCMC Sampling • Gibbs sampling (Glauber dynamics, heat-bath) • Metropolis-Hastings algorithm Markov chain for sampling X = (X1, X2,…, Xn) ∼ μ pick a random i; resample Xi ~ µv( · |N(v)); pick a random i; propose a random c; Xi = c w.p. ∝ µ(X’)/µ(X); [Glauber, ’63] [Geman, Geman, ’84] [Metropolis et al, ’53] [Hastings, ’84] • Analysis: coupling methods [Aldous, ’83] [Jerrum, ’95] [Bubley, Dyer ’97] may give O(n log n) upper bound for mixing time
Computational Phase Transition hardcore model:graph G(V,E),max-degree A,fugacity >0 approx sample independent set in G w.p. λ(△)= (△-1)(△-1) [Weitz,.STOC'06:lfλ<λc,nO(log△)time. (△-2)A [Sly,FOCS'l0 best paper]:lfλ>λc, NP-hard even for A=O(1). [Efthymiou,Hayes,Stefankovic, Vigoda,Y.,FOCS'16]: max-deg△ lfλ<入c,O(n log n)mixing time. If A is large enough,and there is no small cycle. A phase transition occurs at Ac
Computational Phase Transition hardcore model: graph G(V,E), max-degree Δ, fugacity λ>0 approx sample independent set I in G w.p. ∝ λ|I| c() = ( 1)(1) ( 2) 2 4 6 8 10 1 2 3 4 5 6 Hard Easy max-deg Δ λ • [Weitz, STOC’06]: If λ<λc, nO(log Δ) time. • [Sly, FOCS’10 best paper]: If λ>λc, NP-hard even for Δ=O(1). [Efthymiou, Hayes, Štefankovič, Vigoda, Y., FOCS’16]: If λ<λc, O(n log n) mixing time. If Δ is large enough, and there is no small cycle. A phase transition occurs at λc
Sampling Counting [Jerrum-Valiant-Vazirani'86]: for all self-reducible problems approx counting exact approx sampling vol() X=(X1.X2.....X) Poly-Time Turing approx inference X~2 Machine Pr[X=·|X=o FON CNITORN ON OCNONMTORAL STUCTU Mark R.JERRUM MCMC Sampling Computational Phase Transition Markov chain for sampling =(X1.X2.....X)~ hardcore model:graph G(V,E).max-degree A,fugacity >0 ● Gibbs sampling (Glauber dynamics,heat-bath) approx sample independent set Iin Gw.p. pick a random i: [Glauber,'63] X(△)= (4-1)a-1) [Weitz,STOC'06]:If <c,no(log A)time. resample~4,(·N(v)h [Geman,Geman,'84] (△-2)A [Sly,FOCS'10 best paper]:If Metropolis-Hastings algorithm NP-hard even for A=0(1). pick a random i: [Metropolis et al,'53] Hard [Efthymiou,.Hayes,Stefankoviě, propose a random e; X-cwp.uxu(); [Hastings,'84] Easy Vigoda,Y.,FOCS'16]: If <he,O(n log n)mixing time. Analysis:coupling methods max-deg△ If A is large enough.and there is no small cycle. [Aldous,'83][Jerrum,'95][Bubley,Dyer'97] A phase transition occurs at e. may give O(n log n)upper bound for mixing time Big Data?
Big Data?