(a) RGrO(1.2 vol.%)/Cu ACS Publications 89 High quality High impact. RGrO(0.3 vol.%)/Cu 200 Cu 100 0 0.00 0.05 0.10 0.150.20 0.25 Engineering strain 200 b f.34) 8 150 'S'A u!juawejou 100 RGrO/Cu(M.L.M. CNT/Cu(M.LM.Rei.32 RGrO/Cu(B.M.Ref.33) TiB./Cu(Ref.30) ■ CNT/Cu.(B.M.Ref.31) 0 0 23456789 10 Reinforcement Volume Fraction(%) (a)Tensile stress-strain curves ot the RGru-and-Cu nacres,and (b)Strengthening efficiency of various reinforments in Cu matrix composites.Ordinate is the increment in percentage of yield strength;B.M.:ball milling process;M.L.M.molecular level mixing process. Published in:Ding-Bang Xiong;Mu Cao;Qiang Guo;Zhanqiu Tan;Genlian Fan;Zhiqiang Li;Di Zhang;ACS Nano 2015,9, 6934-6943. D0I:10.1021/acsnano.5b01067 Copyright 2015 American Chemical Society
(a) Tensile stress–strain curves of the RGrO-and-Cu nacres, and (b) Strengthening efficiency of various reinforments in Cu matrix composites. Ordinate is the increment in percentage of yield strength; B.M.: ballmilling process; M.L.M.: molecular level mixing process. Published in: Ding-Bang Xiong; Mu Cao; Qiang Guo; Zhanqiu Tan; Genlian Fan; Zhiqiang Li; Di Zhang; ACS Nano 2015, 9, 6934-6943. DOI: 10.1021/acsnano.5b01067 Copyright © 2015 American Chemical Society
Pull-out (a) (c) Fracture d 300m Fracture 3μm Crack deflection 5 um ▣ Figure 7.(a)The specimen of 1.2 vol RGrO-and-Cu nacre after fracture.(b)RGrO pull-out(with smooth edge)and fracture(with torn edge)modes observed at fractured surface.(c)Schematic representation of failure modes of the RGrO.(d)Stepwise fracture parallel to the layers indicating an effective deflection of crack propagating along the RGrO-Cu interface and (e) enlargement of the box marked in image (d).(f)Schematic 7 presentation for crack deflection
Figure 7. (a) The specimen of 1.2 vol % RGrO-and-Cu nacre after fracture. (b) RGrO pull-out (with smooth edge) and fracture (with torn edge) modes observed at fractured surface. (c) Schematic representation of failure modes of the RGrO. (d) Stepwise fracture parallel to the layers indicating an effective deflection of crack propagating along the RGrO-Cu interface and (e) enlargement of the box marked in image (d). (f) Schematic presentation for crack deflection. 7
6O] 034nm 311 -220 ,200 111 500nm 10nm 2 4 6 BKoV Figure 8.(a)Typical interfacial structure in the specimen of 1.2 vol RGrO-and-Cu nacre.(b)Area marked in (a)with higher magnification, and clear interface between graphene and Cu can be observed.(c)TEM analysis for 1.2 vol RGrO-and-Cu nacre after fracture.Copper nanoparticles were observed on delaminated RGrO,indicating goods interfacial bonding between RGrO and copper matrix
Figure 8. (a) Typical interfacial structure in the specimen of 1.2 vol % RGrO-and-Cu nacre. (b) Area marked in (a) with higher magnification, and clear interface between graphene and Cu can be observed. (c) TEM analysis for 1.2 vol % RGrO-and-Cu nacre after fracture. Copper nanoparticles were observed on delaminated RGrO, indicating good interfacial bonding between RGrO and copper matrix. 8
工业触媒 104 102 触媒实验 10-2 应用袭面科学 10- 10-4 纯表面 科学 10-0 单晶 多品 微粒子,超微粒于 胶体 图1出前表面研究的主要领域 11
11
绪论 口材料科学、信息科学和生命科学是当前新 技术革命中的三大前沿科学,材料的表界 面在材料科学中有重要的地位 ▣材料表界面对材料整体性能具有决定性影 响,材料的腐蚀、老化、硬化、破坏、印 刷、涂膜、粘结、复合等等,无不与材料 的表界面密切有关。 13
13 绪论 材料科学、信息科学和生命科学是当前新 技术革命中的三大前沿科学,材料的表界 面在材料科学中有重要的地位 材料表界面对材料整体性能具有决定性影 响,材料的腐蚀、老化、硬化、破坏、印 刷、涂膜、粘结、复合等等,无不与材料 的表界面密切有关