基于改进CV模型的金相图像分割

对金相图像进行快速精确分割是金相晶粒评级的关键步骤,利用传统Chan-Vese(CV)模型很难将晶粒精确地提取出来.为了更加精确地对金相图像进行分割,提出一种基于改进CV模型的金相图像分割方法.初始化水平集函数,对曲线内外两部分分别计算其倒数坎贝拉距离,并将该距离的大小作为拟合中心的权重系数,有效抑制了噪声点对区域拟合中心准确性的影响;引入指数熵自适应调节曲线内外能量权重,减少固定能量权重对曲线演化的影响;同时加入距离规范项以避免水平集函数的重新初始化,加速该模型的收敛.实验结果表明,与传统CV模型、测地线活动轮廓模型、距离规范项的水平集模型以及偏置场修正水平集模型相比,所提方法分割出的金相图像更加精确,分割效率较高且模型收敛性较好.
文件格式:PDF,文件大小:1.05MB,售价:2.88元
文档详细内容(约8页)
点击进入文档下载页(PDF格式)
共8页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录