《工程科学学报》采用稿,hp/aig/生程料学学报2180咒.©北京科技大学2020 DOI: 基于Udwadia-Kalaba理论的自行车机器人平衡 控制方法研究 张佳乐),赵睿英区,冯艳丽2,杨皓),武琳琳) 1)长安大学工程机械学院公路养护装备国家工程实验室,陕西西安710064 2) 西北工业大学航天学院,陕西西安710068 ☒通信作者,E-mail:ruiying.zhao@chd.edu.cn 出版稿 摘要针对自行车机器人侧向自平衡问题,以一类装有角动量轮的自行车机器人为研究对象,提出一种新的平衡控 制方法。该方法根据自行车机器人静止时刻的侧向平衡条件,构造机器大平衡控制的运动学约束,并将平衡约束视 为控制目标。基于Udwadia-Kalaba(U-K)理论,建立满足机器人侧尚平衡的扭矩解析模型,设计基于模型的平衡约 束跟随控制器。研究结果表明,所提控制方法能够实现自车需人的侧向平衡,克服机器人侧向横滚角日初始偏 差的干扰,通过对平衡扭矩模型的计算,对自行车机器人进动平衡控制。相较于传统PD反馈控制方法,该种基 于模型设计的控制方法,具有系统响应速度快、超调量和轻制扭矩易于优化等特点。借助MATLAB软件,对所提 控制方法进行了仿真验证,实现了初始横滚角速度分别为Qs、1s、2s、5s条件下的自行车机器人侧向自平衡控 制,仿真结果验证了控制系统的稳定性和有效性,为无人驾驶自行车机器人的平衡控制领域提供了一个新的思路。 关键词自行车机器人;角动量轮:Udwadia-Kalaba理论:自平衡控制:PD控制 分类号TM911.3 Study on balance control method of bicycle Robot based on Udwadia- Kalaba theory ZHANG Jia-le ZHAO Rui-ying,FENG Yan-IP YANG Hao,WU Lin-lin 1)National Epgineering Laboratory for Highway Maintenance Equipment,Chang 'an University,School of Construction Machinery,Shaanxi,Xi an,710064 2)College of Astronautics,Northwestern Polytechnical University,Shaanxi,Xi'an,710068 Corresponding author,E-mail:ruiying.zhao@chd.edu.cn ABSTRACT In the 21st century,with the rapid development of computing and sensing technology,autonomous driving has become a hot and important research topic.The vast market for bicycles creates huge opportunities for driverless bikes.Unmanned bicycle robot has the characteristics of flexible movement and narrow body,so it can be widely used in disaster area rescue,entertainment performance,and transportation scenes,so many scholars have studied and paid attention to this type of bicycle.For the lateral self-balancing problem of bicycle robot,a new balance control method is studied for a 投稿日期:2021-8-27 基金项自:中国博士后科学基金第14批特别资助(2021T140585)、陕西省重点研发计划项目(2021 ZDLGY09-02)、陕西 省自然科学基础研究计划面上项目(2020JM-240)和中央高校基本科研业务费资助项目(300102251202)
工程科学学报 DOI: 基于 Udwadia-Kalaba 理论的自行车机器人平衡 控制方法研究 张佳乐 1),赵睿英 1),冯艳丽 2),杨皓 1),武琳琳 1) 1) 长安大学工程机械学院公路养护装备国家工程实验室,陕西 西安 710064 2) 西北工业大学航天学院,陕西 西安 710068 通信作者, E-mail: ruiying.zhao@chd.edu.cn 摘 要 针对自行车机器人侧向自平衡问题,以一类装有角动量轮的自行车机器人为研究对象,提出一种新的平衡控 制方法。该方法根据自行车机器人静止时刻的侧向平衡条件,构造机器人平衡控制的运动学约束,并将平衡约束视 为控制目标。基于 Udwadia-Kalaba(U-K)理论,建立满足机器人侧向平衡的扭矩解析模型,设计基于模型的平衡约 束跟随控制器。研究结果表明,所提控制方法能够实现自行车机器人的侧向平衡,克服机器人侧向横滚角 θ 初始偏 差的干扰,通过对平衡扭矩模型的计算,对自行车机器人进行主动平衡控制。相较于传统 PD 反馈控制方法,该种基 于模型设计的控制方法,具有系统响应速度快、超调量小和控制扭矩易于优化等特点。借助 MATLAB 软件,对所提 控制方法进行了仿真验证,实现了初始横滚角速度分别为 0°/s、1°/s、2°/s、5°/s 条件下的自行车机器人侧向自平衡控 制,仿真结果验证了控制系统的稳定性和有效性,为无人驾驶自行车机器人的平衡控制领域提供了一个新的思路。 关键词 自行车机器人;角动量轮;Udwadia-Kalaba 理论;自平衡控制;PD 控制 分类号 TM911.3 Study on balance control method of bicycle Robot based on UdwadiaKalaba theory ZHANG Jia-le1) , ZHAO Rui-ying1) , FENG Yan-li 2) , YANG Hao1) , WU Lin-lin1) 1) National Engineering Laboratory for Highway Maintenance Equipment, Chang 'an University, School of Construction Machinery, Shaanxi, Xi 'an, 710064 2) College of Astronautics, Northwestern Polytechnical University, Shaanxi, Xi 'an, 710068 Corresponding author, E-mail: ruiying.zhao@chd.edu.cn ABSTRACT In the 21st century, with the rapid development of computing and sensing technology, autonomous driving has become a hot and important research topic. The vast market for bicycles creates huge opportunities for driverless bikes. Unmanned bicycle robot has the characteristics of flexible movement and narrow body, so it can be widely used in disaster area rescue, entertainment performance, and transportation scenes, so many scholars have studied and paid attention to this type of bicycle. For the lateral self-balancing problem of bicycle robot, a new balance control method is studied for a 投稿日期:2021-8-27 基金项目:中国博士后科学基金第 14 批特别资助(2021T140585)、陕西省重点研发计划项目(2021ZDLGY09-02)、陕西 省自然科学基础研究计划面上项目(2020JM-240)和中央高校基本科研业务费资助项目(300102251202) 《工程科学学报》录用稿,https://doi.org/10.13374/j.issn2095-9389.2021.08.27.007 ©北京科技大学 2020 录用稿件,非最终出版稿
class of bicycle robot equipped with angular momentum wheel.According to the lateral balance condition of the bicycle robot,the kinematics constraint of the robot balance control is constructed,and the balance constraint is regarded as the control target.Based on Udwadia-Kalaba(U-K)theory,a torque analytical model satisfying the lateral balance of the robot was established,and a balance constraint following controller based on the model was designed.The results show that the proposed control method can realize the lateral balance of the bicycle robot and overcome the disturbance caused by the initial deviation of the lateral roll Angle 0.Through the calculation of the balance torque model,the bicycle robot is actively balanced.Compared with the traditional PD feedback control method,the control method based on the model design has the characteristics of fast system response,small overshot and easy to optimize the control torque.With the help of MATLAB software,the proposed control method is simulated and verified,and the lateral self-balancing control of the bicycle robot under the initial roll angular velocity of 0/s,1/s,2/s and 5/s is achieved.The simulation results verify the stability and effectiveness of the control system.It provides a new idea for the balance control of unmanned bicyele robot KEY WORDS Bicycle robot:Angular momentum wheel;Udwadia-Kalaba theory;Self-balancing control,PD control 自行车是一种使用历史悠久的代步交通工具,具有结构简单、环保经济、用途广泛等优点,其 历史可大约追溯到第二次工业革命时期凹。进入21世纪,随着计算和传感技术的飞速发展,使得自 动驾驶成为一个热门而重要的研究课题。自行车的广阔市场为无人驾驶自行车创造了巨大的机会。 无人驾驶自行车机器人具有运动灵活、车身狭小等特点,从而能够六泛应用到灾区救援、娱乐表演、 物流运输等场景中),因此得到了众多学者对该类型自行车的研究与关注。 近年来,围绕着自行车机器人的稳定平衡控制策略问题,】 国内外的学者开展了深入的研究。其 中,Tanaka等人通过控制转向角或利用离心力来控制平衡。然而,该方法无法实现自行车静止状 态的平衡控制。Le等人则是通过改变质心的位置来控制机器人的平衡,但该方法增加了自行车的 重量,导致系统的响应时间较慢。Schwab等人6-则指⊙通过转向车把来平衡低速(静止)状态的自 行车困难较大,在这种情况下,可采用角动量轮进行侧向平衡控制,相比之下,该方法可以实现在 静止状态下的车体平衡控制。目前,己有一些使用角动量轮进行机器人自平衡的线性控制方法被提 出。其中Lam等人8-对自行车的横滚角度进行实时测量,采用PD控制算法与PID控制算法,实现 了两自由度自行车机器人的平衡控制。Chen等人o将自行车动态模型进行线性化和离散化,设计了 模型预测控制器来实现自行车的平衡控制,使用了两个旋转方向相反的飞轮来抵消自行车偏航动力 学中的反作用力矩,对于每个飞轮需要两个执行器来调节围绕两个正交轴的角速度,但会使平衡 设备的复杂性增加。Spya等人对动力学模型进行了线性化处理,并采用极点置零法设计了平衡控 制器。上述方法大多需要对模型进行线性化处理,但自行车机器人是一个复杂的非线性系统,模型 简化会降低控制系统精度。针对这些问题,Cui等人提出了一种基于DA-PBC方法的非线性控制 器,为简化辅助平衡设备仅使用一个飞轮,将与飞轮旋转方向相反的扭矩用于自行车的平衡控制。 张等人1设计了一种美线性控制器,通过控制陀螺仪进行自行车的平衡控制。此外,也有许多其他 两轮自行车的非线性平衡控制方法被提出,Lee和Ham的非线性控制以及Chen和Dao的模糊控 制方法等,这些控制方法考虑了自行车机器人系统的非线性因素,利用反馈信息设计机器人平衡 控制器,有效解决了模型简化所产生的控制系统精度受限的问题,成为了自行车机器人控制领域的 研究热点。 与上述传统的非线性控制方法不同,陈等人618基于Udwadia-Kalaba(U-K)理论从一个新的 角度出发,将控制目标视为受控对象的伺服约束条件,并通过产生主动伺服约束力使受控系统实现 控制目标,即利用主动控制的思想来解决机械系统的控制问题。该方法是专门针对机械系统的一种 新非线性控制方法,并被应用至不同领域中,其中:赵等人在机械臂位置控制方面应用了该方法, 能够较好地解决伺服约束控制方面问题。赵等人考虑了系统的关节摩擦以及不确定性的影响,将 该方法应用到非线性Deta并联机器人的鲁棒控制中,并验证了系统稳定性与有效性。陈等人四针对 欠驱动移动机器人的平衡控制问题,提出了一种基于U-K理论的自适应律的控制方法,该自适应律
class of bicycle robot equipped with angular momentum wheel. According to the lateral balance condition of the bicycle robot, the kinematics constraint of the robot balance control is constructed, and the balance constraint is regarded as the control target. Based on Udwadia-Kalaba (U-K) theory, a torque analytical model satisfying the lateral balance of the robot was established, and a balance constraint following controller based on the model was designed. The results show that the proposed control method can realize the lateral balance of the bicycle robot and overcome the disturbance caused by the initial deviation of the lateral roll Angle θ. Through the calculation of the balance torque model, the bicycle robot is actively balanced. Compared with the traditional PD feedback control method, the control method based on the model design has the characteristics of fast system response, small overshot and easy to optimize the control torque. With the help of MATLAB software, the proposed control method is simulated and verified, and the lateral self-balancing control of the bicycle robot under the initial roll angular velocity of 0°/s, 1°/s, 2°/s and 5°/s is achieved. The simulation results verify the stability and effectiveness of the control system. It provides a new idea for the balance control of unmanned bicycle robot. KEY WORDS Bicycle robot; Angular momentum wheel; Udwadia-Kalaba theory; Self-balancing control; PD control 自行车是一种使用历史悠久的代步交通工具,具有结构简单、环保、经济、用途广泛等优点,其 历史可大约追溯到第二次工业革命时期[1]。进入 21 世纪,随着计算和传感技术的飞速发展,使得自 动驾驶成为一个热门而重要的研究课题。自行车的广阔市场为无人驾驶自行车创造了巨大的机会[2]。 无人驾驶自行车机器人具有运动灵活、车身狭小等特点,从而能够广泛应用到灾区救援、娱乐表演、 物流运输等场景中[3],因此得到了众多学者对该类型自行车的研究与关注。 近年来,围绕着自行车机器人的稳定平衡控制策略问题,国内外的学者开展了深入的研究。其 中,Tanaka 等人[4]通过控制转向角或利用离心力来控制平衡。然而,该方法无法实现自行车静止状 态的平衡控制。Lee 等人[5]则是通过改变质心的位置来控制机器人的平衡,但该方法增加了自行车的 重量,导致系统的响应时间较慢。Schwab 等人[6-7]则指出通过转向车把来平衡低速(静止)状态的自 行车困难较大,在这种情况下,可采用角动量轮进行侧向平衡控制,相比之下,该方法可以实现在 静止状态下的车体平衡控制。目前,已有一些使用角动量轮进行机器人自平衡的线性控制方法被提 出。其中 Lam 等人[8-9]对自行车的横滚角度进行实时测量,采用 PD 控制算法与 PID 控制算法,实现 了两自由度自行车机器人的平衡控制。Chen 等人[10]将自行车动态模型进行线性化和离散化,设计了 模型预测控制器来实现自行车的平衡控制,使用了两个旋转方向相反的飞轮来抵消自行车偏航动力 学中的反作用力矩,对于每个飞轮,需要两个执行器来调节围绕两个正交轴的角速度, 但会使平衡 设备的复杂性增加。Sprya 等人[11]对动力学模型进行了线性化处理,并采用极点置零法设计了平衡控 制器。上述方法大多需要对模型进行线性化处理,但自行车机器人是一个复杂的非线性系统,模型 简化会降低控制系统精度。针对这些问题,Cui 等人[12]提出了一种基于 IDA-PBC 方法的非线性控制 器,为简化辅助平衡设备仅使用一个飞轮,将与飞轮旋转方向相反的扭矩用于自行车的平衡控制。 张等人[13]设计了一种非线性控制器,通过控制陀螺仪进行自行车的平衡控制。此外,也有许多其他 两轮自行车的非线性平衡控制方法被提出,Lee 和 Ham 的非线性控制[14]以及 Chen 和 Dao 的模糊控 制方法等[15],这些控制方法考虑了自行车机器人系统的非线性因素,利用反馈信息设计机器人平衡 控制器,有效解决了模型简化所产生的控制系统精度受限的问题,成为了自行车机器人控制领域的 研究热点。 与上述传统的非线性控制方法不同,陈等人[16-18]基于 Udwadia-Kalaba(U-K)理论从一个新的 角度出发,将控制目标视为受控对象的伺服约束条件,并通过产生主动伺服约束力使受控系统实现 控制目标,即利用主动控制的思想来解决机械系统的控制问题。该方法是专门针对机械系统的一种 新非线性控制方法,并被应用至不同领域中,其中:赵等人[19]在机械臂位置控制方面应用了该方法, 能够较好地解决伺服约束控制方面问题。赵等人[20]考虑了系统的关节摩擦以及不确定性的影响,将 该方法应用到非线性 Delta 并联机器人的鲁棒控制中,并验证了系统稳定性与有效性。陈等人[21]针对 欠驱动移动机器人的平衡控制问题,提出了一种基于 U-K 理论的自适应律的控制方法,该自适应律 录用稿件,非最终出版稿
可根据系统存在的不确定性不断进行跟踪误差的调整。韩等人22将一种基于U-K理论的轨迹跟踪控 制方法应用到六轴协作机器人上,使系统具有较好的稳定性。尹等人2在解决车辆横向和偏航运动 控制问题中使用了该方法,通过数值仿真结果验证了该方法的有效性。此外,董等人4将该方法应 用到柔性机器人控制中,通过理论分析与仿真结果,验证了该控制方法可以完成系统的轨迹跟踪控 制任务。然而该方法在自行车机器人领域的应用尚未涉及,论文利用该方法对自行车机器人侧向平 衡控制进行研究,具有一定的理论意义和应用价值。 综上所述,本文基于U-K理论,针对自行车机器人侧向自平衡问题,提出了一种满足系统平衡 要求的主动控制方法。相比于传统的反馈控制方法,该方法从一个新的角度来解决自行车机器人的 平衡控制问题,克服了初始偏差的干扰,实现了不同初始横滚角速度下自行车机器人的侧向平衡约 束跟随控制,并借助MATLAB软件对该控制方法进行了数值仿真,验证了该系统的稳定性和有效 性,可实现自行车机器人系统的侧向自平衡控制。 l.Udwadia-Kalaba方程 Udwadia-Kalaba方程是一类用于描述受约束系统动力学问题的方程。 考虑一个机械系统包含n 个质点,整个系统在任意时刻1的位形可由广义坐标向量q∈R”表示资统的义速度向量为 g∈R”,广义加速度向量为R”。无约束条件下,机械系统的运动方程可以表述为: M(g,t)=F(q,q,t) (1) 其中,M(q,t)=M(q,t)∈R"为质量矩阵(或惯性矩阵y F(©,,t)∈R”包括重力、外力和离心 力/科式力网。 如果该机械系统受到一组约束(完整约束或非完整约束)/,约束方程为: ∑4(q,09.=c,(g,2,0 (2) 其中,lI<n)是约束的个数:A():R”×RR和c~):R”×R→R是C连续的。该约束可以用 矩阵形式表示为: Aq,1)9=Cq,1) (3) 其中,A(q,t)=[An]xm’c(q,t)=[GC2…C]。通过对式(3)微分,可以得到该约束的二阶形 式: ∑ +∑(4.(g,09,= (4) 其中, dag,)s♪。 A( A (q.t) 8qk 8t (5) 录 C(q.1)=(90oak* c,(q,1) dt Ot (6) c@.-2会4g% 6(g,)= (7) 则, ∑A(q,0i=b,(g,4,)=1,2,…0 (8) 将上式用矩阵形式表示为: Aq,1)9=b(q,9,t) (9) 其中,b(q,)=[bb,…b,]。假定机械系统处于理想情况下,则做出以下假设: 假设1:对于任意(g,t)eR”×R,系统惯性矩阵M~(g,t)>0
可根据系统存在的不确定性不断进行跟踪误差的调整。韩等人[22]将一种基于 U-K 理论的轨迹跟踪控 制方法应用到六轴协作机器人上,使系统具有较好的稳定性。尹等人[23]在解决车辆横向和偏航运动 控制问题中使用了该方法,通过数值仿真结果验证了该方法的有效性。此外,董等人[24]将该方法应 用到柔性机器人控制中,通过理论分析与仿真结果,验证了该控制方法可以完成系统的轨迹跟踪控 制任务。然而该方法在自行车机器人领域的应用尚未涉及,论文利用该方法对自行车机器人侧向平 衡控制进行研究,具有一定的理论意义和应用价值。 综上所述,本文基于 U-K 理论,针对自行车机器人侧向自平衡问题,提出了一种满足系统平衡 要求的主动控制方法。相比于传统的反馈控制方法,该方法从一个新的角度来解决自行车机器人的 平衡控制问题,克服了初始偏差的干扰,实现了不同初始横滚角速度下自行车机器人的侧向平衡约 束跟随控制,并借助 MATLAB 软件对该控制方法进行了数值仿真,验证了该系统的稳定性和有效 性,可实现自行车机器人系统的侧向自平衡控制。 1. Udwadia-Kalaba 方程 Udwadia-Kalaba 方程是一类用于描述受约束系统动力学问题的方程。考虑一个机械系统包含 n 个质点,整个系统在任意时刻 t 的位形可由广义坐标向量 n q R 表示,系统的广义速度向量为 n q R ,广义加速度向量为 n qR 。无约束条件下,机械系统的运动方程可以表述为: M q t q F q q t ( , ) ( , , ) (1) 其中, ( , ) ( , ) T n n M q t M q t R 为质量矩阵(或惯性矩阵); ( , , ) n F q q t R 包括重力、外力和离心 力/科式力[25]。 如果该机械系统受到一组约束(完整约束或非完整约束),约束方程为: 1 ( , ) ( , ) ( 1,2, , ) n rs s r s A q t q c q t r l (2) 其中,l l n ( ) 是约束的个数; ( ) : n Ars R R R 和 ( ) : n r c R R R 是 1 C 连续的。该约束可以用 矩阵形式表示为: A q t q c q t ( , ) ( , ) (3) 其中, 1 2 ( , ) [ ] ( , ) [ ]T A q t A c q t c c c rs l n l , 。通过对式(3)微分,可以得到该约束的二阶形 式: 1 1 ( ( , )) ( ( , )) ( , ) n n rs s rs s r s s d d A q t q A q t q c q t dt dt (4) 其中, 1 ( , ) ( , ) ( , ) n rs rs rs k k k d A q t A q t A q t q dt q t (5) 1 ( , ) ( , ) ( , ) n r r r k k k d c q t c q t c q t q dt q t (6) 令 1 ( , ) ( , ) ( ( , )) n r r rs s s d d b q t c q t A q t q dt dt (7) 则, 1 ( , ) ( , , ) ( 1,2, , ) n rs s r s A q t q b q q t r l (8) 将上式用矩阵形式表示为: A q t q b q q t ( , ) ( , , ) (9) 其中, 1 2 ( , ) [ ]T l b q t b b b 。假定机械系统处于理想情况下,则做出以下假设: 假设 1:对于任意( , ) n q t R R ,系统惯性矩阵 1 M q t ( , ) 0 。 录用稿件,非最终出版稿
假设2:对于所有(g,q,t)∈R”×R,rank[A(q,t]≥1。 假设3:约束方程是相容的,对于任意A(q,)和b(9,q,),至少存在一个9满足约束方程。 定理1:满足假设1至假设3,受约束的机械系统运动方程,即Udwadia-Kalaba方程7: M(g,t)i=F(9,q,t)+F.(g,9,) =F(g,9,)+Mq,)(4Aq,)M(q,t)-2)* (10) (b(gg,1)-A(g,1)M(g,1)F(qq,1)) 其中,(4(g,)M(g,)2)为A(g,)M(g,)的逆矩阵。 当系统受到一个伺服约束,且不存在初始偏差和不确定性时,控制器可以基于模型设计为 π=F(⑨,q,),可使系统满足约束方程(9),实现控制要求。对于欠驱动系统,其独立的控制输入 变量个数少于系统的自由度个数,因此,常用于全驱动机器人的控制方法通常难以直接应用到自行 车机器人控制系统中,则控制器可以基于模型架构成B(q,t)π形式,来实现系统的控制要求。其中 B(q,t)eRm为系统的输入矩阵,x∈R1为系统的控制扭矩,且n>m火 2.自行车机器人动力学童横和控制 2.1机器人动力学横型 自行车机器人结构简图如图1所示。O-YZ代表全局惯性参考坐标系,其中O为后轮与地面 接触点,OX是机器人行走方向,OZ是垂直地面向上的方向,为横滚角(机器人相对于垂直面 的倾斜角度),日1为角动量轮旋转角度,整个机器人的质必用点表示,m,和m2分别表示机器人 (包括前后轮)和角动量轮的质量,L和L2分别表示从地面到机器人质心和角动量轮质心的距离, 除角动量轮外的机器人绕X轴的转动惯量为11,角动绳轮的转动惯量为I2,8表示重力加速度。 稿代 图1自行车机器人结构简图 ig.1 Bicycle robot structure simplified diagram 利用欧拉-拉格朗方程建立机器人的无约束动力学模型): Ψ=T-U (11) daΨ aΨ =Q(i=1,2) (12) 其中,T为系统动能:U为系统势能:Q为系统所受外力。取0、日,为广义坐标9,、q2。 系统的运动可分为两部分:平动和转动。对于平动运动,自行车机器人质心和角动量轮质心的 速度分别为: v=Lecose,v.=Lesine (13) vy2 =Le cose,v.2=L0sine (14) 其中,V为自行车机器人Y方向的线速度:v为自行车机器人Z方向的线速度:V2为角动量轮 Y方向的线速度:v2为角动量轮Z方向的线速度
假设 2:对于所有( , , ) n q q t R R , rank[ ( , )] 1 A q t 。 假设 3:约束方程是相容的,对于任意 A q t ( , ) 和b q q t ( , , ) ,至少存在一个 q 满足约束方程。 定理 1:满足假设 1 至假设 3,受约束的机械系统运动方程,即 Udwadia-Kalaba 方程[17]: 1/2 1/2 1 ( , ) ( , , ) ( , , ) = ( , , ) ( , ) ( ( , ) ( , ) ) ( ( , , ) ( , ) ( , ) ( , , )) M q t q F q q t F q q t c F q q t M q t A q t M q t b q q t A q t M q t F q q t (10) 其中, 1/2 ( ( , ) ( , ) ) A q t M q t 为 1/2 A q t M q t ( , ) ( , ) 的逆矩阵[26]。 当系统受到一个伺服约束,且不存在初始偏差和不确定性时,控制器可以基于模型设计为 ( , , ) F q q t c ,可使系统满足约束方程(9),实现控制要求。对于欠驱动系统,其独立的控制输入 变量个数少于系统的自由度个数,因此,常用于全驱动机器人的控制方法通常难以直接应用到自行 车机器人控制系统中,则控制器可以基于模型架构成 B q t ( , ) 形式,来实现系统的控制要求。其中 ( , ) n m B q t R 为系统的输入矩阵, m 1 R 为系统的控制扭矩,且 n m [24]。 2.自行车机器人动力学建模和控制 2.1 机器人动力学模型 自行车机器人结构简图如图 1 所示。O XYZ 代表全局惯性参考坐标系,其中O 为后轮与地面 接触点,OX 是机器人行走方向, OZ 是垂直地面向上的方向, 为横滚角(机器人相对于垂直面 的倾斜角度), 1 为角动量轮旋转角度,整个机器人的质心用点 P 表示, m1 和 m2 分别表示机器人 (包括前后轮)和角动量轮的质量, L1和 L2 分别表示从地面到机器人质心和角动量轮质心的距离, 除角动量轮外的机器人绕 X 轴的转动惯量为 1 I ,角动量轮的转动惯量为 2 I , g 表示重力加速度。 P 1 X Y Z O L1 L2 图 1 自行车机器人结构简图 Fig.1 Bicycle robot structure simplified diagram 利用欧拉-拉格朗日方程建立机器人的无约束动力学模型[27]: T U (11) ( 1, 2) i i i d Q i dt q q (12) 其中,T 为系统动能;U 为系统势能;Qi为系统所受外力。取 、 1 为广义坐标 q1、 2 q 。 系统的运动可分为两部分:平动和转动。对于平动运动,自行车机器人质心和角动量轮质心的 速度分别为: 1 1 1 1 cos , sin y z v L v L (13) 2 2 2 2 cos , sin y z v L v L (14) 其中, y1 v 为自行车机器人 Y 方向的线速度; z1 v 为自行车机器人 Z 方向的线速度; y2 v 为角动量轮 Y 方向的线速度; z 2 v 为角动量轮 Z 方向的线速度。 录用稿件,非最终出版稿
机器人和角动量轮的转动速度为: 01=0,02=0+0 (15) 因此结合式(13)·(15),系统的动能可表示为: I=me,广+m(e,+ugr+n (16) m(L.0y+w(l.oy g=之aP+@,=or+,6+ (17) T=T+T, (18) 从装高 其中,T为系统平动动能:T为系统转动动能。 系统的势能表示为: U=(mL +mL)g cos0 (19) Mq=F+Bt (20) 心可为系统的输入矩阵:T∈K,,,,地 m+m+ M= (21)) (22) 「gsin0m m2L2) (23) 2.2控制器设计 当自行车机器人存在一定的初始横滚角速度日时,为了使系统可以快速收敛于平衡位置,需对 机器人施加一组目标约束,即期单的阳标位置g:飞,)→R”,且q连续,则机器人系统的期望 速度g,期望加速度。列后将系统的位置误差为零看作系统的一个完整约束,即q-g=0。定 义系统位置误差: e=9-q (25) 则系统速度误差:兰94。 系统加速度误差:e=4-。 为使系统位置能够完全到达期望位置,需要满足以下约束: @+Ke+Ke=0 (26) 其中,K与2为正定对角矩阵。 将式(26)重新表达为矩阵形式: Ag=b (27 其中,4=[10:b=-K0-K0:q(0=0)。 根据定理1可以得出维持机器人侧向平衡的约束力模型,且该模型是实现平衡约束所需扭矩的 最小值21,根据约束力的解析模型,设计系统的控制扭矩τ为: T=(AM-B)*[b-AM-F(g,g,t)] (28) +I-(AM-B)AM-B)h 其中,h∈R”为任意向量;I为单位矩阵
机器人和角动量轮的转动速度为: 1 2 1 , (15) 因此结合式(13)-(15),系统的动能可表示为: 2 2 2 2 1 1 1 1 1 2 2 2 2 2 2 1 1 2 2 1 1 1 1 ( ) ( ) ( ) ( ) 2 2 2 2 1 1 ( ) ( ) 2 2 T m v m v m v m v y z y z m L m L (16) 2 2 2 2 2 1 1 2 2 1 2 1 1 1 1 1 ( ) ( ) ( ) ( ) 2 2 2 2 T I I I I (17) T T T 1 2 (18) 其中,T1为系统平动动能;T2 为系统转动动能。 系统的势能表示为: 1 1 2 2 U m L m L g ( ) cos (19) 结合式(12),自行车机器人系统静止时刻的动力学方程可表示为: Mq F B (20) 其中, B [0;1]为系统的输入矩阵; 1 1 R 为角动量轮提供的控制扭矩。 2 2 1 1 2 2 1 2 2 2 2 m L m L I I I M I I (21) 1 q (22) 1 1 2 2 sin ( ) 0 g m L m L F (23) 2.2 控制器设计 当自行车机器人存在一定的初始横滚角速度 时,为了使系统可以快速收敛于平衡位置,需对 机器人施加一组目标约束,即期望的目标位置 d q :[ , ) n t R ,且 d q 连续,则机器人系统的期望 速度 d q ,期望加速度 d q 。而后将系统的位置误差为零看作系统的一个完整约束,即 0 d q q 。定 义系统位置误差: d e q q (25) 则系统速度误差: d e q q ,系统加速度误差: d e q q 。 为使系统位置能够完全到达期望位置,需要满足以下约束: e K e K e 1 2 0 (26) 其中, K1与 K2 为正定对角矩阵。 将式(26)重新表达为矩阵形式: A q b 1 1 (27) 其中, 1 A 1 0 ; 1 1 2 b K K ; ( 0) d q 。 根据定理 1 可以得出维持机器人侧向平衡的约束力模型,且该模型是实现平衡约束所需扭矩的 最小值[28],根据约束力的解析模型,设计系统的控制扭矩 [29]为: 1 1 1 1 1 1 1 1 1 ( ) [ ( , , )] [ ( ) )] A M B b A M F q q t I A M B A M B h (28) 其中, n h R 为任意向量;I 为单位矩阵。 录用稿件,非最终出版稿