己会?em 回顾与周考 na y幂的意义 同底数幂的乘法运算法则 am·a"=amtn(m,n都是正整数) 幂的乘方运算法则 人 (am)y=am(m、m都是正整数)
回顾与思考 幂的意义: a·a· … ·a n个a a n = 同底数幂的乘法运算法则: a m · an = a m+n(m,n都是正整数) 幂的乘方运算法则: (a m) n= a (m、n都是正整数) mn
己会?em 82幂的乘方与积的乘方 积的乘方
---积的乘方
己会?m 计算:46×0256 小明认为46×025(4×025)6, 马上得出结果为1.你认为他这样计算有 道理吗? 般的,如果n是正整数,(ab)mabn 成立吗?
计算:4 6×0.256 小明认为4 6×0.256=(4×0.25)6 , 马上得出结果为1.你认为他这样计算有 道理吗? 一般的,如果n是正整数,(ab)n=a nbn 成立吗?
银橐&没流 己会?m (1)根据乘方定义(幂的意义),(ab)3 表示什么? (2)为了计算(化简)算式 ababab,可以应用乘法的交 换律和结合律 又可以把它写成什么形式? (3)由特殊的(ab)3=b3出发,你能想到一般的公式 吗? ab=ab abab =aa·u·bbb a3.b 丸(ab)=a"bn
(1) 根据乘方定义(幂的意义),(ab) 3 表示什么? 探索 & 交流 (ab)3= ab·ab·ab (2) 为了计算(化简)算式ab·ab·ab,可以应用乘法的交 换律和结合律. 又可以把它写成什么形式? =a·a·a ·b·b·b =a 3·b 3 (3)由特殊的 (ab) 3=a 3b 3出发, 你能想到一般的公式 吗? 猜想 (ab) n= a nb n
Beartou.com (ab)=a"b的证明 在下面的推导中,说明每一步(变形)的依据: n个ab (ab)2=abab……:ab (罪的意义 )n个 n个b 乘油交换律、 ●●●●●● a)(bb ●●●●●● b)(结合律 anb (的意义)
的证明 在下面的推导中,说明每一步(变形)的依据: (ab) n = ab·ab· …… ·ab ( ) =(a·a·……·a) (b·b·……·b) ( ) =a n·b n . ( ) 幂的意义 乘法交换律、 结合律 幂的意义 n个ab n个a n个b (ab) n = a n·b n