微分运算的基本公式和法则3.2.2由微分的表达式dy=f'(c)d以及基本初等函数的求导公式,可以对应地给出基本初等函数地微分公式d(c)= 0 (c为常数);dsina=cosdc;dcos a=-sinada;dtana=secdadcot=-cscadcda;dcd arcsin =darccos =V1-2Vi-22A1Iaadac;d arctan a = + da;darccot =dlna=1da;der = er dc;1d;dar = arlnadc;dloga =lnadau = μau-1 da;返回全屏关闭退出6/20
3.2.2 ©$ÄúªÚ{K d©Lª dy = f 0 (x)dx ±9Äмê¦úª, ±é A/ÑÄмê/©úª: d(c) = 0 (c~ê); d sin x = cos x dx; d cos x = − sin x dx; d tan x = sec2 x dx; d cot x = − csc2 x dx; d arcsin x = √ 1 1−x2 dx; d arccos x = −√ 1 1−x2 dx; d arctan x = 1 1+x2 dx; darccot x = − 1 1+x2 dx; dex = e x dx; d ln x = 1 x dx; dax = a x ln a dx; d loga x = 1 x ln a dx; dxµ = µxµ−1 dx; 6/20 kJ Ik J I £ ¶ '4 òÑ
此外,由于微分和导数的对应关系,我们不难得到下列定理定理2设函数u和在处可微,则函数cu,u士u,u·,"(其中,对于最后的分式V0)在α处可微.且有d(cu)= cdu,其中 c为常数d(u±v)=du±dv;d(uv) = vdu + udv;d (c) = , 0 * 0.返回全屏关闭退出7/20
d , du©ÚêéA'X, ·ØJe½n. ½n 2 ¼ê u Ú v 3 x ?, K¼ê cu, u ± v, u · v, u v£Ù¥, é u©ª, v 6= 0¤3 x ?, k d(cu) = cdu, Ù¥ c ~ê; d(u ± v) = du ± dv; d(uv) = vdu + udv; d u v = vdu−udv v 2 , v 6= 0. 7/20 kJ Ik J I £ ¶ '4 òÑ