△S=Ss-Ss<0 Problem”阝=(215±10)° sin(2)≡sin(24) HFAG Smaller than b→ccs L EPS 2007 b-ccs World Average 068 00 in almost all modes BaBar 2 Bell 021±028±0 0.50±0.21±0.06 Average 0.39±0.17 BaBar Belle 0.64±0.10±004 Average 061±007 ∴“071±024±004 Theory Expect x BaBar s Belle 0.30±0.52±0.08 Average 0.58±020 Sin28s-penguin BaBar 0.40±0.23±003 Average 05s: 049.>sin d, cc(bar)s bAbAr 020士0.52±024 Average 0.20±0.57 BaB Bar e283002 0t+04+07 Average 0.48±024 Naive average of all b-s modes BaBar 2 Belle 0.18±0.23±0,11 sin2βe=0.56±0.05 Average 029±0.18 .72±0.71±0.08 -0.43±0.49±000 2. 1o deviation (was 2.6)btwn Average &BaBar →076±0.1:18 b→ syy and b→cs k Belle 46B±015±0.03 Average 0.73±0.10 New Physics !?
Smaller than bgccs in almost all modes Naïve average of all b g s modes sin2b eff = 0.56 ± 0.05 2.1s deviation (was 2.6) btwn b g sqq and b g ccs Theory Expect sin2f1 > sin2f1 s-penguin cc(bar)s New Physics !? DS = Ssqq - Sccs < 0 “Problem” β = (21.5 ± 1.0)°
Table 61: Branching fractions(BF)of charmless mesonic B+ decays(in units of 10-6). Upper limits are at 90%CL. Values in red(blue)are new published (preliminary) result since PDG2006 as of March 15, 2007 RPP# Mode PDG2006 Av BABAR Belle CLEO CDF 182 KOr+ 24.1±1.7 239±1.1±1.0228+08±1.318.8+32+ 23.1士1.0 K+ 121士08 13.3±0.6士06 124士05士06129+ 128士06 K 70.5士35 68.9士20士3.2692±2.2±3.7 69.7+28 185 K <14 49+19±0.8 <28 1123> 4.9 n 2.6士06 3.3士06士03 19±0.3+2 22士0.3 187 26士4 189±18±1.319.3+10±15264+82±33 19.3士16 K+(1430) N 158±2.2士22 158±3.1 +(1430) New 9.1士2.7士14 91士3.0 wK+ 5.1士0.7 6.1±06±0.48.1±06±0632+4±0.8 68士0.5 wK.+ <74 <3.4 <3.4 190°(980KO <3.9 <3.9 <3.9 6(o)K+ <2.5 <2.5 <2.5 116±19 13.5±12+0897±06+0876+36±16 107士08 K*+0 69士24 6.9士20±13 71+114±10 69士2.3 56士9 64.1士24±40488±1.1±36 548士29 195 K+r+T(NR) 31+10 29±06+08 29 1 196K+o(90) 8.9±1.0 95土108 88±08+09 1972(1 3 199 fogiasoKk See HFAG, hep-ex/0704 3575 <10.7 <117 200fo(160K+t <4.4 201f(1525K+ <34 <3.4 <49 <3.4 K+ 50+83 5110888389±047+84+4±1.8 4.25+0.55 208K(1430)°r+ 38士5 14.4士22±5.3 471+4 204K2(1430)°r+ <6.9 <23.1 <6.9 <69 K(1410° <45 <45 206k(1680 <12 <15 <12 27 K-丌+r <18 <18 <4.5 <1.8 210 KOr+ro <66 211 <48 8.0+14±0.5 213 11士4 <6.1 <74 <6.1 214 89士21 9.6±1.7士158.9士1.7士1.2 92士1.5
See HFAG, hep-ex/0704.3575
Global Fit Results: y=(63+15)o 0=(100±13)0 ud ub d cb td 0 CKM fitter 0.6 △m&△md o。 △m sumner 2007 K 05目sm2 texc at c>as 0.4 0.3 K 0.2 0.1 0.2 0 0.2 0.4 0.6 0.8
+ + = 0 * * * VudVub VcdVcb VtdVtb Global Fit Results: γ=(63±15)0 α=(100±13)0
Window for bSm ①B3- arg vts~-0.02 阝=- arg VtdΦBd~0.37 measured b ts s CDF Run‖2006 L= 1.0 fb →daa±10▲95%CLmt172ps B B 15165695Ny 313 t data 1.645 o(stat. only) 0.5 Yusub+cscb tvis=0.5 1 b§ 01520253035 0 PRL97,242003(2006 s b§ △ms=1777±0.10(stat)±0.07(sys)ps-1
+ + = 0 * * * VusVub VcsVcb VtsVtb FBs ≡ - argVts ~ - 0.02 b = - argVtd ⇨ FBd ~ 0.37 measured e.g. 2006 Dms = 17.77 0.10 (stat) 0.07 (sys) ps -1 PRL 97, 242003 (2006) Window for BSM
3. Factorization Approaches: QcDF/ SCET, PQCD…
3. Factorization Approaches: QCDF/SCET, pQCD, …