两个集合,两个函数 问题6: 顺便问一下;为什么这里说群论会给我们很大帮助? E:Z→Z码 D:Z5→Z. Group theory will allow faster methods of encoding and decoding messages
两个集合,两个函数 Group theory will allow faster methods of encoding and decoding messages
间题7: 在上面的假设下,采用最大相似度的解码 方法,你认为怎样的code word集合有利 于发现并纠正错码? 小提示:解码过程可以理解为从receive word定位到 code word,再从code word解码到明文组,其中最迷惑 解码人的是哪一步?
小提示:解码过程可以理解为从receive word定位到 code word,再从code word解码到明文组,其中最迷惑 解码人的是哪一步?
问题8: 你能从第7个问题的思考中,理解码字hamming距离 的本质,以及随后定义出来的编码系统的最小距离的 用意吗? Ifx=(1100)andy=(1010 are codewords,then d(x,y)=2.If x is transmitted and a single error occurs,then y can never be received. 如果=(1100),y=(1011),我们收到了 个码1110,我们可以得到什么结论?
问题8: 你能从第7个问题的思考中,理解码字hamming距离 的本质,以及随后定义出来的编码系统的最小距离的 用意吗? 如果x=(1100), y=(1011),我们收到了 一个码1110,我们可以得到什么结论?
最小码距与纠错能力的关系 Theorem 8.3 Let C be a code with dmin 2n+1.Then C can correct any n or fewer errors.Furthermore,any 2n or fewer errors can be detected in C. PROOF.Suppose that a codeword x is sent and the word y is received with at most n errors.Then d(x,y)<n.If z is any codeword other than x,then 2n+1≤d(x,z≤d(x,y)+d(y,z)≤n+d(y,z). Hence,d(y,z)>n+1 and y will be correctly decoded as x.Now suppose that x is transmitted and y is received and that at least one error has occurred,but not more than 2n errors.Then 1 d(x,y)<2n.Since the minimum distance between codewords is 2n +1,y cannot be a codeword. Consequently,the code can detect between 1 and 2n errors. 口
最小码距与纠错能力的关系
问题9: 在设计编码时怎么能比较方便地“控 制”最小码距呢?