《电磁学》教案 质中的电场 第七章物质中的电场_ 研究问题:电介质对静电场的响应,电介质极化的宏观规律及其微观机制; 电介质中电场的分布和电介质中电场的基本方程式,电场的计 算 §7.1电介质的极化 电介质的极化 1、电介质在静电场中与场发生相互作用。正常情况下,电场不可能使组成 电介质的原子或分子内部的正负电荷产生宏观上的运动,但能影响带电 粒子在微观范围内的运动。宏观上观察到的物理现象是这种影响的平均 效果。 2、实验分析 (1)现象:带电量一定时,电容器两极板间的电势差因插入电介质而 减小一一说明电容器内部的场强减弱了 (2)原因:介质表面出现了与极板电荷异号的电荷一一电介质的极化。 (3)极化所产生的电荷称为极化电荷。电介质内部E≠0的事实表明介 质表面的极化电荷与极板上的异号电荷并不等量。 (4)插入电介质后,电容器的电容增大 3、相对介电常数 (1)当电容器内部充满同一种均匀的电介质时,介质电容器的电容为 真空电容器电容的εr倍 (2)εr是反映介质特性的物理量。 电介质极化的微观模型 原子或分子系统的电矩:原子或分子系统的净电荷为零,但它在系统以外 产生的电场不一定为零。一级近似下,把原子或分子看作一个电偶极子,用电矩 描写原子或分子的电效应 两类电介质及其极化过程 1、无极分子: (1)原子或分子中正电荷中心和负电荷中心重合,整个分子的电偶极 矩为零。如He、Ar等惰性气体原子,其电子成球对称分布。双原 子分子H2、CO,三原子分子CO,四原子分子CH4等等 (2)受外电场作用时,正负电荷中心发生相对位移,整个分子成为电 偶极子。位移大小与电场成正比一一位移极化
《电磁学》教案 ——7 物质中的电场 1 第七章 物质中的电场 研究问题:电介质对静电场的响应,电介质极化的宏观规律及其微观机制; 电介质中电场的分布和电介质中电场的基本方程式,电场的计 算。 §7.1 电介质的极化 一、 电介质的极化 1、电介质在静电场中与场发生相互作用。正常情况下,电场不可能使组成 电介质的原子或分子内部的正负电荷产生宏观上的运动,但能影响带电 粒子在微观范围内的运动。宏观上观察到的物理现象是这种影响的平均 效果。 2、实验分析 (1) 现象:带电量一定时,电容器两极板间的电势差因插入电介质而 减小——说明电容器内部的场强减弱了。 (2) 原因:介质表面出现了与极板电荷异号的电荷——电介质的极化。 (3) 极化所产生的电荷称为极化电荷。电介质内部 E≠0 的事实表明介 质表面的极化电荷与极板上的异号电荷并不等量。 (4) 插入电介质后,电容器的电容增大。 3、相对介电常数 (1) 当电容器内部充满同一种均匀的电介质时,介质电容器的电容为 真空电容器电容的εr 倍。 r C C = 0 (2) εr 是反映介质特性的物理量。 二、 电介质极化的微观模型 原子或分子系统的电矩:原子或分子系统的净电荷为零,但它在系统以外 产生的电场不一定为零。一级近似下,把原子或分子看作一个电偶极子,用电矩 描写原子或分子的电效应。 两类电介质及其极化过程 1、无极分子: (1) 原子或分子中正电荷中心和负电荷中心重合,整个分子的电偶极 矩为零。如 He、Ar 等惰性气体原子,其电子成球对称分布。双原 子分子 H2、CO,三原子分子 CO2,四原子分子 CH4等等。 (2) 受外电场作用时,正负电荷中心发生相对位移,整个分子成为电 偶极子。位移大小与电场成正比——位移极化
《电磁学》教案 质中的电场 (3)电子位移量极小,因为实验室所能产生的宏观电场要比原子核在 原子范围内产生的电场小得多。 有极分子 (1)分子净电荷为零,但其正电荷中心和负电荷中心不重合。电偶极 矩不为零。如HCl、H0、NaCl等。 (2)无外场作用时,由于分子的无规则热运动,电介质中各偶极矩的 取向完全杂乱,各体积内分子偶极矩的矢量和为零。 (3)外加电场作用时,每个分子电矩都不同程度地转向电场方向,趋 向于沿电场方向排列一一取向极化 (4)无规则热运动几乎不因电场的存在而受到影响,取向作用受到严 重破坏。室温下,电场为10V/m时,大约1000个气体分子沿电 场方向可以获得一个净电偶极矩(1.6×10-19Cm) 介质极化的宏观结果: (1)在任一体积元内,各分子电偶极矩的矢量和不再为零; (2)偶极矩对外产生附加电场,叠加在自由电荷所激发的外电场上。 思考题:P3907-17-27-3 计算题:P3927-17-27-37-4 §7.2极化强度和极化电荷 、极化强度 1、电介质的极化是介质内电偶极子有序排列的结果。各分子电矩排列的 整齐程度与电介质极化的程度相对应。 2、定义:介质单位体积中分子电矩的矢量和。=2 4(C/m2) 3、意义:描写电介质极化程度。是反映介质特征的宏观量。 极化电荷 1、极化电荷 (1)因介质极化而产生的电荷,与电偶极子集体对应的宏观电荷 分布,反映了介质对电场的一种响应。极化电荷起源于原子 或分子的极化,因而总是牢固地束缚在介质上,而不能象自 由电荷那样脱离所属的分子。 (2)与自由电荷不同,不能自由移动,亦不能与导体上的自由电 荷相中和(与绝缘体上摩擦产生的电荷不同)
《电磁学》教案 ——7 物质中的电场 2 (3) 电子位移量极小,因为实验室所能产生的宏观电场要比原子核在 原子范围内产生的电场小得多。 2、有极分子 (1) 分子净电荷为零,但其正电荷中心和负电荷中心不重合。电偶极 矩不为零。如 HCl、H2O、NaCl 等。 (2) 无外场作用时,由于分子的无规则热运动,电介质中各偶极矩的 取向完全杂乱,各体积内分子偶极矩的矢量和为零。 (3) 外加电场作用时,每个分子电矩都不同程度地转向电场方向,趋 向于沿电场方向排列——取向极化。 (4) 无规则热运动几乎不因电场的存在而受到影响,取向作用受到严 重破坏。室温下,电场为 106 V/m 时,大约 1000 个气体分子沿电 场方向可以获得一个净电偶极矩(1.6×10-19C·m). 3、 介质极化的宏观结果: (1) 在任一体积元内,各分子电偶极矩的矢量和不再为零; (2) 偶极矩对外产生附加电场,叠加在自由电荷所激发的外电场上。 思考题:P390 7-1 7-2 7-3 计算题:P392 7-1 7-2 7-3 7-4 ------------------------------------------------------------------- §7.2 极化强度和极化电荷 一、极化强度 1、电介质的极化是介质内电偶极子有序排列的结果。各分子电矩排列的 整齐程度与电介质极化的程度相对应。 2、定义:介质单位体积中分子电矩的矢量和。 V p P m = (C/m 2) 3、意义:描写电介质极化程度。是反映介质特征的宏观量。 二、 极化电荷 1、极化电荷: (1) 因介质极化而产生的电荷,与电偶极子集体对应的宏观电荷 分布,反映了介质对电场的一种响应。极化电荷起源于原子 或分子的极化,因而总是牢固地束缚在介质上,而不能象自 由电荷那样脱离所属的分子。 (2) 与自由电荷不同,不能自由移动,亦不能与导体上的自由电 荷相中和(与绝缘体上摩擦产生的电荷不同)
《电磁学》教案 质中的电场 (3)极化电荷是在外场作用下产生的;极化电荷在激发电场方面 与自由电荷规律相同。 2、极化电荷的分布: (1)均匀电介质(数密度均匀),均匀极化(P是恒矢量),极化电 荷只分布在介质的表面上,介质内部无极化电荷 (2)均匀电介质,即使极化不均匀,一般在介质内部都无体分布 的极化电荷。只有在均匀介质中存在体分布的自由电荷的地 方才会有体分布的极化电荷 (3)两种不同的均匀介质,除了介质表面有极化电荷外,两种介 质的分界面上,亦有极化电荷分布 (4)不均匀电介质,不仅表面有极化电荷分布,而且介质内部也 有体分布的极化电荷。 极化电荷与极化强度的关系 (1)微分关系△Qn=-N△V= -gNAs cos=-P△s (2)积分关系Q=5FA介质内部任何体积V内的极化 电荷的电量,等于极化强度对包围V的表面S的通量的负值。 (3)极化强度相当于一个大电矩。 三、极化电荷的面密度和体密度 1、极化电荷的面密度 (1)普遍表达式Gn=(P2-F)=Pn-Pn (2)若第二种介质是真空n=Pn= Pcos在介质与真空的 交界面上,极化电荷的面密度等于极化强度的法向分量,极 化电荷的正负取决于P和面法线的相对取向。 2、极化电荷的体密度 (1)不均匀介质内部有极化电荷分布,在直角坐标系中,极化电 荷与极化强度的关系为n-(x+-+) (2)电介质均匀极化时,极化电荷的体密度为零 例题1:圆柱状电介质沿轴线极化,P=kx。求极化电荷。 例题2:计算沿Z方向均匀极化的介质球表面的极化电荷 思考题:P3907-57-67-77-87-137-14
《电磁学》教案 ——7 物质中的电场 3 (3) 极化电荷是在外场作用下产生的;极化电荷在激发电场方面 与自由电荷规律相同。 2、极化电荷的分布: (1) 均匀电介质(数密度均匀),均匀极化(P 是恒矢量),极化电 荷只分布在介质的表面上,介质内部无极化电荷。 (2) 均匀电介质,即使极化不均匀,一般在介质内部都无体分布 的极化电荷。只有在均匀介质中存在体分布的自由电荷的地 方才会有体分布的极化电荷。 (3) 两种不同的均匀介质,除了介质表面有极化电荷外,两种介 质的分界面上,亦有极化电荷分布。 (4) 不均匀电介质,不仅表面有极化电荷分布,而且介质内部也 有体分布的极化电荷。 3、极化电荷与极化强度的关系: (1) 微分关系 Qp qN V qNl S P S = − = − cos = − (2) 积分关系 = − S Qp P S 介质内部任何体积 V 内的极化 电荷的电量,等于极化强度对包围 V 的表面 S 的通量的负值。 (3) 极化强度相当于一个大电矩。 三、 极化电荷的面密度和体密度 1、极化电荷的面密度 (1) 普遍表达式 p P2 P1 P1n P2n = −( − ) = − (2) 若第二种介质是真空 p = P1n = Pcos 在介质与真空的 交界面上,极化电荷的面密度等于极化强度的法向分量,极 化电荷的正负取决于 P 和面法线的相对取向。 2、极化电荷的体密度 (1) 不均匀介质内部有极化电荷分布,在直角坐标系中,极化电 荷与极化强度的关系为 ( ) z P y P x Px y z p + + − 。 (2) 电介质均匀极化时,极化电荷的体密度为零。 例题 1:圆柱状电介质沿轴线极化,P=kx。求极化电荷。 例题 2:计算沿 Z 方向均匀极化的介质球表面的极化电荷。 思考题:P390 7-5 7-6 7-7 7-8 7-13 7-14
《电磁学》教案 质中的电场 计算题:P3937-57-6 §7.3介质中的静电场 宏观电场与微观电场 1、极化电荷的电场仍服从库仑定律和叠加原理 2、宏观精度上测量的场,是微观电场的统计平均值。E=Jed=() 介质中的电场由一切外场源产生的电场与一切极化电荷产生场的叠加而 成。E=E,+E 4、已知自由电荷和极化电荷的分布时,可以求出介质中的电场 极化强度与电场强度的关系 1、电场与极化之间的反馈联系 介质极化过程中,极化的原因(外场源产生的电场作用)和极化结果(产 生附加电场,影响极化,可能改变外场源的分布)之间存在着反馈联系· 外场源 电介质中的场「电介质 (自由电荷) 外场E(电场)EE+E Ep对外场源的作用 介质极化产生附加电场极化 Ep 2、极化强度与电场强度的关系 (1)极化稳定后,P与E存在一定的联系 (2)实验结论:大部分各向同性的电介质,当场强不太强时,P与E 成正比,方向相同。 P=x。E0E 各向同性介质的物态方程 (3)x为介质的极化率,反映介质极化的难易程度。 (4)各向异性的电介质,P与E呈线性关系,方向并不相同。 例题1:平行板电容器内充满均匀介质,求介质内场强。E=E 例题2:无限大均匀介质中浸入带电导体球,求介质内的场强。(结果同上) 思考题:P3917-107-11
《电磁学》教案 ——7 物质中的电场 4 计算题:P393 7-5 7-6 -------------------------------------------------------------------- §7.3 介质中的静电场 一、 宏观电场与微观电场 1、极化电荷的电场仍服从库仑定律和叠加原理。 2、宏观精度上测量的场,是微观电场的统计平均值。 = = V V edV e V E 1 3、 介质中的电场由一切外场源产生的电场与一切极化电荷产生场的叠加而 成。 E Ef Ep = + 4、 已知自由电荷和极化电荷的分布时,可以求出介质中的电场。 二、 极化强度与电场强度的关系 1、电场与极化之间的反馈联系 介质极化过程中,极化的原因(外场源产生的电场作用)和极化结果(产 生附加电场,影响极化,可能改变外场源的分布)之间存在着反馈联系—— 2、极化强度与电场强度的关系 (1) 极化稳定后,P 与 E 存在一定的联系。 (2) 实验结论:大部分各向同性的电介质,当场强不太强时,P 与 E 成正比,方向相同。 P e E 0 = ——各向同性介质的物态方程 (3) e 为介质的极化率,反映介质极化的难易程度。 (4) 各向异性的电介质,P 与 E 呈线性关系,方向并不相同。 例题 1:平行板电容器内充满均匀介质,求介质内场强。 r Ef E = 例题 2:无限大均匀介质中浸入带电导体球,求介质内的场强。(结果同上) 思考题:P391 7-10 7-11 7-12 7-13 外场源 (自由电荷) 外场 Ef 电场 电介质 电介质中的场 E=Ef+Ep 极化 介质极化产生附加电场 Ep Ep 对外场源的作用
《电磁学》教案 质中的电场 计算题:P3937-57-77-97-107-117-12 §7.4实际物体的极化(略) 原子的极化率稀疏材料的极化 稠密材料的极化克劳修斯-莫索谛公式 各向异性介质的极化和介质的非线性极化 四、铁电体、压电体和驻极体 §7.5介质中的高斯定理 电位移矢量介质中的高斯定理 、有介质存在时的高斯定理 (1)内容:通过任意一个闭合曲面的电通量等于该曲面内部的自由电 荷和极化电荷的代数和除以εo。 (2)表达式:5E=。∑(q+q) (3)意义:极化电荷和自由电荷同是电场的源 2、电位移矢量 (1)电位移矢量的引入∑q=-5P 5(=:E+d∑9→b=E+P (2)高斯定理修改:电位移矢量对任意闭合曲面的通量完全决定于包 围在该封闭曲面内的自由电荷,与极化电荷无关 q 不仅适用于静电场,对时变场也适用。 (3)电位移线起止于正负自由电荷,不因极化电荷的存在而改变 3、电位移矢量与电场强度的关系 (1)普遍关系 D=ee+p (2)各向同性介质 D=EE+P=EE+CoXE=Eo(1+XE=EEE=EE (3)极化率和相对介电常数决定于介质性质和介质所处的状态。均为 正数。对于真空,相对介电常数接近于1 (4)实际应用的意义:D是研究介质中电场时一个非常有用的物理量
《电磁学》教案 ——7 物质中的电场 5 计算题:P393 7-5 7-7 7-9 7-10 7-11 7-12 ---------------------------------------------------------------- §7.4 实际物体的极化(略) 一、 原子的极化率 稀疏材料的极化 二、 稠密材料的极化 克劳修斯-莫索谛公式 三、 各向异性介质的极化和介质的非线性极化 四、 铁电体、压电体和驻极体 -------------------------------------------------------------------- §7.5 介质中的高斯定理 一、 电位移矢量 介质中的高斯定理 1、有介质存在时的高斯定理 (1) 内容:通过任意一个闭合曲面的电通量等于该曲面内部的自由电 荷和极化电荷的代数和除以ε0。 (2) 表达式: ( ) 1 0 = f + p S E dS q q (3) 意义:极化电荷和自由电荷同是电场的源。 2、电位移矢量 (1) 电位移矢量的引入 = − S qp P dS + = f S E P dS q ( ) 0 D E P = 0 + (2) 高斯定理修改:电位移矢量对任意闭合曲面的通量完全决定于包 围在该封闭曲面内的自由电荷,与极化电荷无关。 = S D dS qf ——不仅适用于静电场,对时变场也适用。 (3) 电位移线起止于正负自由电荷,不因极化电荷的存在而改变。 3、电位移矢量与电场强度的关系 (1) 普遍关系 D E P = 0 + (2) 各向同性介质 D E P E E E rE E = + = + = + = = 0 0 0 0 0 (1 ) (3) 极化率和相对介电常数决定于介质性质和介质所处的状态。均为 正数。对于真空,相对介电常数接近于 1。 (4) 实际应用的意义:D 是研究介质中电场时一个非常有用的物理量