Complex Integration: Fundamental Properties 例4.1 求/ Reed,C为 (i)沿实轴由0→1,再平行于虚轴1→1+i; (i)沿虚轴由0→i,再平行于实轴i→1+i; (i)沿直线0→1+ 对于(i) Rezdz =0+adx
Complex Integration Cauchy Integral Theorems Two Useful Lemmas Complex Integration: Definition Complex Integration: Fundamental Properties ~4.1 ¦ Z C Rezdz§C (i)÷¢¶d0 → 1§2²1uJ¶1 → 1 + i¶ (ii)÷J¶d0 → i§2²1u¢¶i → 1 + i¶ (iii)÷0 → 1 + i éu(ii) Z C Rezdz = 0 + Z 1 0 xdx = 1 2 C. S. Wu 1où ECÈ©()
Complex Integration: Fundamental Properties 例4.1 求/ Reed,C为 (i)沿实轴由0→1,再平行于虚轴1→1+i; (i)沿虚轴由0→i,再平行于实轴i→1+i; (i)沿直线0→1+ 对于(i) Rezdz =0+adx
Complex Integration Cauchy Integral Theorems Two Useful Lemmas Complex Integration: Definition Complex Integration: Fundamental Properties ~4.1 ¦ Z C Rezdz§C (i)÷¢¶d0 → 1§2²1uJ¶1 → 1 + i¶ (ii)÷J¶d0 → i§2²1u¢¶i → 1 + i¶ (iii)÷0 → 1 + i éu(ii) Z C Rezdz = 0 + Z 1 0 xdx = 1 2 C. S. Wu 1où ECÈ©()
Complex Integration: Fundamental Properties 例4.1 求/ Reed,C为 (i)沿实轴由0→1,再平行于虚轴1→1+i; (i)沿虚轴由0→i,再平行于实轴i→1+i; (i)沿直线0→1+ 对于(i) Rezdz=/(1+i)tda +
Complex Integration Cauchy Integral Theorems Two Useful Lemmas Complex Integration: Definition Complex Integration: Fundamental Properties ~4.1 ¦ Z C Rezdz§C (i)÷¢¶d0 → 1§2²1uJ¶1 → 1 + i¶ (ii)÷J¶d0 → i§2²1u¢¶i → 1 + i¶ (iii)÷0 → 1 + i éu(iii) Z C Rezdz = Z 1 0 (1 + i)tdt = 1 2 (1 + i) C. S. Wu 1où ECÈ©()
Complex Integration: Fundamental Properties 例4.1 求/ Reed,C为 (i)沿实轴由0→1,再平行于虚轴1→1+i; (i)沿虚轴由0→i,再平行于实轴i→1+i; (i)沿直线0→1+ 对于(i) Rezdz=/(1+i)tda (1+i)
Complex Integration Cauchy Integral Theorems Two Useful Lemmas Complex Integration: Definition Complex Integration: Fundamental Properties ~4.1 ¦ Z C Rezdz§C (i)÷¢¶d0 → 1§2²1uJ¶1 → 1 + i¶ (ii)÷J¶d0 → i§2²1u¢¶i → 1 + i¶ (iii)÷0 → 1 + i éu(iii) Z C Rezdz = Z 1 0 (1 + i)tdt = 1 2 (1 + i) C. S. Wu 1où ECÈ©()
Complex Integration: Fundamental Properties 评述 f(e)dz m max|2k-→0 ∑∫(G)4 C k=1 复变积分的数值依赖于
Complex Integration Cauchy Integral Theorems Two Useful Lemmas Complex Integration: Definition Complex Integration: Fundamental Properties µã Z C f(z) dz = lim max |∆zk|→0 X n k=1 f(ζk)∆zk w,§ECÈ©ê6u ȼê à: §=È©/þe0 È©´» C. S. Wu 1où ECÈ©()