五、计算水平地震作用的振型分解反应谱法 作用于i质点上的力有 m 惯性力1=m1(x+x2) mi o 弹性恢复力S1=k1x1+k2x2+…knxn m2② 阻尼力R=c1+c12x2+…cnn mI o 运动方程m+∑+∑x=-mx -m, (,+xg) S() R() m](3}+[l]}+k]x}=-m]少F()
五、计算水平地震作用的振型分解反应谱法 i =1,2, N 作用于i质点上的力有 m1 m2 mi mN xi xg(t) mi ( ) i i g − m x + x S (t) i R (t) i 惯性力 Ii = mi ( x i + x g) 弹性恢复力 i i i in n S = k x + k x +k x 1 1 2 2 阻尼力 i i i in n R = c x + c x +c x 1 1 2 2 运动方程 i i g n j i j n j i i i j i m x +c x +k x = −m x =1 =1 mx cx kx mIx (t) g + + = −
m]}+(]1x}+[k1x}=[m](F( 设{x0)2=∑x)D(o 代入运动方程,得 m∑{X)b,()+E∑{xD()+区k]∑{xD()=-[m1() 方程两端左乘{Xy XH[mk∑{xB()+{Xc∑{X,D(r)+ +KiIR), D())=r, mkg(t) {X[m]{X}D()+{Xxy[elx,D()+{xy[k]x}D() Xy[m]{2(t)
设 = = N i i i x t X D t 1 ( ) ( ) ( ( )) ( ) ( ( )) ( ) 1 1 1 m X D t c X D t k X D t m I x t g N i i i N i i i N i i i + + = − = = = ( ( )) ( ) ( ( )) ( ( )) 1 1 1 X k X D t X m I x t X m X D t X c X D t g T j N i i i T j N i i i T j N i i i T j + = − + + = = = ( ) ( ) ( ) ( ) X m I x t X m X D t X c X D t X k X D t g T j j j T j j j T j j j T j = − + + = 代入运动方程,得 方程两端左乘 T X j mx cx kx mIx (t) g + + = −
LrrImlr, D(t)+rMcKx, D()+XkKX,D,(t) Xy[m]{2(r) MD()+CD+KD()=一{XH四m]{() M={XHm{x-振型广义质量 K={XH[k]xb-振型广义刚度 ={X[c{x}--振型广义阻尼系数 D,()+D D,(t) M M M Ki=OM C=250, M D()+25a,D1+o2D,()= WLMK LrMLMKY
( ) ( ) ( ) * * * M D t C D K D t X m I x t g T j j j j j j j + + = − * 2 * Kj = j M j * * Cj = 2 j j M j ( ) 2 ( ) ( ) 2 x t X M X X M I D t D D t g j T j T j j j j j j j − + + = ( ) ( ) ( ) ( ) X m I x t X m X D t X c X D t X k X D t g T j j j T j j j T j j j T j = − + + = j T M j = X j m X * ---j振型广义质量 ---j振型广义阻尼系数 j T Kj = X j k X * j T Cj = X j c X * ---j振型广义刚度 ( ) ( ) ( ) * * * * * x t M X M I D t M K D M C D t g j T j j j j j j j j − + + =
D()+25,D1+2D() LrYIMI rLMKr s(t) ∑mxn y LXMLMKX) j振型的振型参与系数 D()+25D+o2D()=-yx2(t) x()}=∑{X,D(t) x()=∑xD(t)
( ) 2 ( ) ( ) 2 x t X M X X M I D t D D t g j T j T j j j j j j j − + + = = = = = n i i j i n i i j i j T j T j j m x m x X M X X M I 1 2 1 ---j振型的振型参与系数 ( ) 2 ( ) ( ) 2 D t D D t x t j j j j j j j g + + = − = = N i i i x t X D t 1 ( ) ( ) = = N j i ji j x t x D t 1 ( ) ( )
D(t)+250,D+oD()=-yxg(t) x() 对于单自由度体系 x+25o+02x=-x、( o,Jx()e-sot- sin @a(t-t)dr 对于振型折算体系(右图) o.xg(t) so (, (t-t)dr D(1)= n=g(ee s o (r-n sin o, TdT x2() y,△,(t) j=1,2,…N
( ) 2 ( ) ( ) 2 D t D D t x t j j j j j j j g + + = − x(t) x (t) g m 2 ( ) 2 x x x x t g + + = − = − − − − t t x t x e t 0 d ( ) g d ( ) sin ( )d 1 ( ) = − − − − t j t j D t x e t j j 0 j ( ) g j ( ) ( ) sin ( )d (t) = j j = − − − − t t j t x e t j j 0 j ( ) g j ( ) sin ( )d 1 ( ) (t) j x (t) g * M j j j 对于单自由度体系 对于j振型折算体系(右图) j =1,2, N