基于声发射信号的铝合金材料损伤表征识别

随着高速铁路的不断提速,高铁轻量化设计中广泛采用高强铝合金材料,但高速列车齿轮箱体服役安全评价亟待完善.本文针对高速列车齿轮箱体使用的铝合金材料服役特性,搭建了声发射检测拉伸试验系统,运用BP神经网络算法对声发射信号进行训练与识别,实现对箱体材料拉伸损伤表征识别与材料服役状态的安全预警.本研究为材料损伤状态的无损实时识别提供了一种识别与预警方法.
文件格式:PDF,文件大小:1.01MB,售价:2.88元
文档详细内容(约8页)
点击进入文档下载页(PDF格式)
共8页,试读已结束,阅读完整版请下载
点击购买下载(PDF)

下载及服务说明

  • 购买前请先查看本文档预览页,确认内容后再进行支付;
  • 如遇文件无法下载、无法访问或其它任何问题,可发送电子邮件反馈,核实后将进行文件补发或退款等其它相关操作;
  • 邮箱:

文档浏览记录