寻找能判断反应是否能自发进行的依据。 用反应的热效应或焓变来作为反应能否 自发进行的判断依据? C(s)+O2(g) CO2(g) △H(2815K)=-3935 kJ. mol- mn(s)+2H+(aq)■→Zn2+(aq)+H2(g) △H(29815K)=-1539 kJ. mol
11 寻找能判断反应是否能自发进行的依据。 用反应的热效应或焓变来作为反应能否 自发进行的判断依据 ? C(s)+ O2(g) CO2 (g) Zn(s)+ 2H+(aq) Zn2+(aq) +H2 (g) ( ) O 1 298.15K 393.5kJ mol − = − r Hm ( ) O 1 298.15K 153.9kJ mol − = − r Hm
H2o(s) H2O(1) △H>0 在101325kpa和高于273.12K(即0℃)时,冰可以自 发地变成水。 CaCO3(s) Cao(s)+CO2(g) △H>0 自发且剧烈地进行热分解生成CaO和 CO20 CaCO3能 在101325kpa和高于1183K(即910℃)时
12 H2O(s) H2O(l) H 0 在101.325kpa和高于273.12K(即0℃)时,冰可以自 发地变成水。 CaCO3(s) CaO (s)+CO2(g) 在101.325kpa和高于1183K(即910℃)时,CaCO3能 自发且剧烈地进行热分解生成CaO和CO2。 H 0
51.3热力学第二定律的统计解释 热力学性质宏观性质微观性质 系统的宏观热力学性质是大量质点的统计平均性质 温度:大量分子平均动能的统计平均值 压力:大量气体分子撞击器壁所产生的动量变化 的统计平均值。 一个确定的宏观状态对应许多不同的微观状态。 所谓系统地微观状态即是对系统内每个微观粒子的状态 位置、速率、能量等)都给予确切描述时系统所呈现 的状态
13 5.1.3 热力学第二定律的统计解释 热力学性质 宏观性质 微观性质 系统的宏观热力学性质是大量质点的统计平均性质 温度:大量分子平均动能的统计平均值。 压力:大量气体分子撞击器壁所产生的动量变化 的统计平均值。 一个确定的宏观状态对应许多不同的微观状态。 所谓系统地微观状态即是对系统内每个微观粒子的状态 (位置、速率、能量等)都给予确切描述时系统所呈现 的状态
B 气体 气体扩散示意图 用(m,n)来表示处于A和B的分子数,称为一种分布。 五种分布:(4,0)(3,1)(2,2)(1,3)(0,4) 系统有五种宏观状态 每种宏观状态又对应有不同的微观状态 微观状态数1 6 把微观状态数(即实现某种分布的方式数)称为 该种分布的热力学概率
14 A B 气体 气体扩散示意图 用(m,n)来表示处于A和B的分子数,称为一种分布。 五种分布:(4,0) (3,1) (2,2) (1,3) (0,4) 系统有五种宏观状态 每种宏观状态又对应有不同的微观状态 把微观状态数(即实现某种分布的方式数)称为 该种分布的热力学概率。 微观状态数 1 4 6 4 1
系统总的微观状态数称为系统总热力学概率 微观状态数〔热力学概率)的多少,体现了系统的混乱 程度,也称为混乱度。 方向一切自发过程都是从热力学概率小的状态朝热力学 概率大的状态,即沿着混乱度增加的方向进行。 限度統法到逼孔度太的索求态时系观变 例:往一杯水中滴入几滴蓝墨水,蓝墨水就 会自发地逐渐扩散到整杯水中 有序的运动变为无序的运动
15 系统总的微观状态数称为系统总热力学概率 一切自发过程都是从热力学概率小的状态朝热力学 概率大的状态,即沿着混乱度增加的方向进行。 当系统达到混乱度最大的宏观状态时,系统宏观变 化也就停止了,这时系统就达到了平衡态。 方向 限度 微观状态数(热力学概率)的多少,体现了系统的混乱 程度,也称为混乱度。 例:往一杯水中滴入几滴蓝墨水,蓝墨水就 会自发地逐渐扩散到整杯水中。 有序的运动变为无序的运动 Ω